首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modeling Salinity Build-Up in Recirculating Nutrient Solution Culture
Abstract:Abstract

This paper presents a simple model for the changes in ion concentration and electrical conductivity (EC) of the recirculating nutrient solution in a closed-loop soilless culture of tomato (Lycopersicon esculentum Mill.). The model was designed on the basis of a balanced equation for plant nutrient uptake: for macrocations (K+, Mg2+ and Ca2+), a linear dependence of concentration on crop water uptake was assumed, while for non-essential ions, such as sodium (Na+), a non-linear function was used. The model was developed for closed-loop hydroponic systems in which crop water uptake (namely, transpiration) is compensated by refilling the mixing tank with complete nutrient solution. In these systems, EC gradually increases as a result of the accumulation of macro-elements and, principally, of non-essential ions, like Na+, for which the apparent uptake concentration (i.e., the ratio between nutrient and water uptake) is lower than their concentration in the irrigation water. For model calibration, data from both the literature and a previous work were used, while validation was performed with data from original experiments conducted with tomato plants in different seasons and using water with different sodium chloride (NaCl) concentrations (10 and 20 meq/L). The results of validation indicate that the model may be a useful tool for the management of closed-loop hydroponics, because it simulates rather well the salt accumulation that occurs in the recirculating nutrient solution when it is prepared with irrigation water of poor quality. Furthermore, the model is able to estimate the amount of crop evapotranspiration that leads to a value of EC at which flushing is necessary, thus enabling one to predict the water and nitrogen runoff of the semi-closed soilless culture.
Keywords:electrical conductivity  hydropanics  runoff  salinity  sodium chloride (NaCl)  tomato  uptake concentration
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号