首页 | 本学科首页   官方微博 | 高级检索  
     检索      

利用高密度SNP 遗传图谱定位小麦穗部性状基因
引用本文:刘凯,邓志英,李青芳,张莹,孙彩铃,田纪春,陈建省.利用高密度SNP 遗传图谱定位小麦穗部性状基因[J].作物学报,2016,42(6):820-831.
作者姓名:刘凯  邓志英  李青芳  张莹  孙彩铃  田纪春  陈建省
作者单位:山东农业大学农学院 / 小麦品质育种研究室/作物生物学国家重点实验室,山东泰安271018
基金项目:本研究由山东省自然科学基金项目(2015ZRB01179, ZR2013CM004)和山东省种质资源创制课题资助。
摘    要:小麦穗部性状之间相关性密切, 其中穗粒数和千粒重是重要的产量构成要素, 挖掘与穗部性状相关联的基因位点对分子标记辅助育种及解释基因效应具有重要意义。本研究以RIL群体(山农01-35×藁城9411) 173个F8:9株系为材料, 利用90 k小麦SNP基因芯片、DArT芯片技术及传统的分子标记技术构建的高密度遗传图谱, 在5个环境下进行穗部相关性状QTL定位。检测到位于1B、4B、5B、6A染色体上7个控制千粒重的加性QTL, 解释表型变异率6.00%~36.30%, 加性效应均来自大粒母本山农01-35; 检测到8个控制穗长的加性QTL, 解释表型变异率14.34%~25.44%; 3个控制穗粒数的加性QTL; 5个控制可育小穗数的加性QTL; 3个控制不育小穗数的加性QTL, 贡献率为8.70%~37.70%; 4个控制总小穗数的加性QTL; 6个控制小穗密度的加性QTL。通过基因型与环境互作分析, 检测到32个加性QTL, 解释表型变异率0.05%~1.05%。在4B染色体区段EX_C101685–RAC875_C27536检测到控制粒重、穗长、穗粒数、可育小穗数、不育小穗数、总小穗数的一因多效QTL,其贡献率为5.40%~37.70%, 该位点在多个环境中被检测到, 是稳定主效QTL。在6A染色体wPt-0959-TaGw2-CAPS区间上检测到控制粒重、总小穗数的QTL。研究结果为穗部性状的分子标记开发、基因精细定位和功能基因克隆奠定了基础。

关 键 词:普通小麦  90  k基因芯片  QTL定位  穗部  SNP  
收稿时间:2015-11-09

Mapping QTLs For Wheat Panicle Traits with High Density SNP Genetic Map
LIU Kai,DENG Zhi-Ying,LI Qing-Fang,ZHANG Ying,SUN Cai-Ling,TIAN Ji-Chun,CHEN Jian-Sheng.Mapping QTLs For Wheat Panicle Traits with High Density SNP Genetic Map[J].Acta Agronomica Sinica,2016,42(6):820-831.
Authors:LIU Kai  DENG Zhi-Ying  LI Qing-Fang  ZHANG Ying  SUN Cai-Ling  TIAN Ji-Chun  CHEN Jian-Sheng
Institution:Group of Wheat Quality Breeding, College of Agronomy, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018,China
Abstract:Panicle traits of wheat are closely correlated between each other,of them grain number per spike and 1000-grain weight are important components of grain yield. In this study,we mapped quantitative trait loci (QTLs) associated with wheatspike traits using a recombinant inbred line (RIL) population (173 lines of F8:9) derived from a cross of Shannong 01-35×Gaocheng 9411.The phenotypic data were collected in five environments and the high density genetic map was constructedusing90k SNP array,DArT technology and traditional molecular markers. In a combination analysis of five environments, many additive QTLs were detected includingseven for 1000-grain weight,eight for spike length,threefor grain number per spike, five for fertile spikelet number per spike, three for sterile spikelet number per spike,four for spikelet number per spike, and six for spike density.Some QTLs showed high rates of phenotypic variation explained (PVE). For example, the PVE of QTLs for 1000-grain weight on 1B, 4B, 5B and 6A ranged from 6.00% to 36.30%,with the favorable alleles from the large-grain parent Shannong 01-35; the PVE of QTLs for spike length ranged from 14.34% to 25.44%, and thatfor sterile spikelet number per spike from 8.70% to 37.70%. In addition to additive loci,32 pairs of epistatic QTLs were detected, which explained 0.05–1.05% of the phenotypic variations. The marker interval between EX_C101685 and RAC875_C27536 on chromosome 4B showed pleiotropic effectsin 1000-grain weight, spike length, grain number per spike, fertile spike number, sterile spikelet number, and spikelet number per spike, with the PVE ranging from 5.40% to 37.70%. There stable main QTLs were detected in multiple environments. Besides, markerinterval between wPt-0959 and TaGw2-CAPS on 6Ahad a locus controllingboth 1000-grain weight and spikelet number per spike. These results are valuable in developing molecular markers, fine mapping and cloning genes for spike traits in wheat.
Keywords:Common wheat  90k array  QTL mapping  Panicle  SNP
本文献已被 CNKI 等数据库收录!
点击此处可从《作物学报》浏览原始摘要信息
点击此处可从《作物学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号