首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An in vitro biomechanical comparison of a limited-contact dynamic compression plate fixation with a dynamic compression plate fixation of osteotomized equine third metacarpal bones
Authors:Sod Gary A  Hubert Jeremy D  Martin George S  Gill Marjorie S
Institution:Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA. gsod@vetmed.lsu.edu
Abstract:OBJECTIVES: To compare the monotonic biomechanical properties and fatigue life of a broad, limited contact, dynamic compression plate (LC-DCP) fixation with a broad, dynamic compression plate (DCP) fixation to repair osteotomized equine 3rd metacarpal (MC3) bones. STUDY DESIGN: In vitro biomechanical testing of paired cadaveric equine MC3 with a mid-diaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. ANIMAL POPULATION: Twelve pairs of adult equine cadaveric MC3 bones. METHODS: Twelve pairs of equine MC3 were divided into 3 test groups (4 pairs each) for (1) 4-point bending single cycle to failure testing, (2) 4-point bending cyclic fatigue testing, and (3) torsional single cycle to failure testing. An LC-DCP (8-hole, 4.5 mm) was applied to the dorsal surface of 1 randomly selected bone from each pair. One DCP (8-hole, 4.5 mm broad) was applied dorsally to the contralateral bone from each pair. All plates and screws were applied using standard AO/ASIF techniques to MC3 bones that had mid-diaphyseal osteotomies. Mean test variable values for each method were compared using a paired t-test within each group. Significance was set at P<.05. RESULTS: The mean 4-point bending yield load, yield bending moment, composite rigidity, failure load, and failure bending moment of LC-DCP fixation were significantly greater (P<.01) than those of broad DCP fixation. Mean cycles to failure for 4-point bending was significantly (P<.001) greater for broad DCP fixation compared with broad LC-DCP fixation. Mean yield load, mean composite rigidity, and mean failure load in torsion was significantly (P<.02) greater for broad LC-DCP fixation compared with broad DCP fixation. CONCLUSION: Broad LC-DCP offers increased stability in static overload testing, however, it offers significantly less stability in cyclic fatigue testing. CLINICAL RELEVANCE: The clinical relevance of the cyclic fatigue data supports the conclusion that the broad DCP fixation is biomechanically superior to the broad LC-DCP fixation in osteotomized equine MC3 bones despite the results of the static overload testing.
Keywords:biomechanical testing  equine metacarpal bone  4-point bending  torsion testing  cyclic testing  limited-contact compression plate
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号