首页 | 本学科首页   官方微博 | 高级检索  
     检索      

不同菜地土壤硝化与反硝化活性
引用本文:胡晓霞,;丁洪,;张玉树,;秦胜金,;李世清.不同菜地土壤硝化与反硝化活性[J].农业环境保护,2009(12):2657-2662.
作者姓名:胡晓霞  ;丁洪  ;张玉树  ;秦胜金  ;李世清
作者单位:[1]福建省农业科学院土壤肥料研究所,福建福州350013; [2]中国科学院水利部水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室,陕西杨凌712100; [3]福建农林大学资源与环境学院,福州350002
基金项目:福建省自然科学基金重点项目(2006J0009);中国科学院水利部水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室开放课胚(10501-210);福建省自然科学基金面上项目(2008J0120);福建省财政专项--福建省农业科学院科技创新团队建设基金(SrrIF-Y01)
摘    要:硝化作用和反硝化作用是氮素气态损失的主要途径,在实验室培养条件下,研究了3种菜地土壤之间硝化反硝化活性的差异,反硝化作用利用乙炔抑制培养法对其进行测定。结果表明,培养33d后红泥土、灰沙土和灰泥土的氮素硝化率均很高,分别为96.1%、88.3%和70.4%,其中红泥土与灰泥土的硝化率差异达到了极显著水平(P〈0.01),而灰沙土与红泥土、灰泥土之间的差异不显著(P〉0.05)。pH值最高和最低的菜地土壤其硝化率分别表现出最高和最低,值得注意的是,在pI-14.61条件下灰泥土的硝化率可达70.4%。氮肥的施用显著或极显著增加了3种土壤硝化过程的N2O排放量,占施氮量的0.59%-0.70%。3种菜地土壤之间氮肥的反硝化活性表现为灰泥土〉红泥土〉灰沙土,其差异也极显著(P〈0.01),氮肥的反硝化损失量占施氮量的-0.02%-0.20%。土壤硝化和反硝化氮素损失累积量随时间t的变化均符合修正的Elovich方程:y=bln(t)+a。

关 键 词:菜地土  硝化作用  反硝化作用  N2O排放

Nitrification and Denitrification Potential in Soils Grown with Vegetables
Institution:HU Xiao-xia, DING Hong, ZHANG Yu-shu, QIN Sheng-jin, LI Shi-qing( 1.Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 320013, China; 2.State Key Lab of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Water and Soil Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China; 3.College of Resource and Environmental, Fujian Agricultural and Forest University, Fuzhou 320002, China)
Abstract:Nitrification and denitrification in soil is the main pathway of gaseous nitrogen loss in the catchments. A soil incubation experiment was conducted under laboratory, condition to reveal differences of nitrification and denitrification potential in vegetable field soils. The deni- trification potential was determined by the acetylene( 10%V/V ) inhibition technique. The results showed the fact that nitrification rates were 96.1%, 88.3% and 70.4% for red soil, gray sandy soil and gray soil, respectively, after 33 days incubation. There was significant difference (P〈0.01) about the nitrification rates between red soil and gray soil, but the difference between the gray sandy soil and red soil gray soil was not that obvious (P〉0.05). The variation of nitrification rate was related with the chemical and physical properties of the soils, especially pH, which appeared that the higher the soil pH was, the higher or lower nitrification rate would be. The nitrification rate could reach 70.4% when pH was 4.61 for gray soil. The application of nitrogen fertilizer could significantly increase the emission of N20 in the process of nitrification, and it accounted for 0.59%-0.70% of the total application of nitrogen fertilizer. The denitrification potential appeared significant difference (P〈0.01 ) among these three soils, with an order of gray soil〉 red soil〉 gray sandy soil. Nitrogen loss in denitrifieation accounted for the rate of -0.02%-0.20% of the total application of nitrogen fertilizer. Nitrogen toss of soil in nitrification and denitrifieation with time, were in line with the revised Elovich equation:y=bln( t )+a.
Keywords:vegetable soils  nitrification  denitrification  N2O emission
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号