首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Winter mulch increases soil CO2 efflux under Phyllostachys praecox stands
Authors:Peikun Jiang  Hailong Wang  Jiasen Wu  Qiufang Xu  Guomo Zhou
Institution:1. School of Environmental Science and Technology, Zhejiang Forestry University, North Circular Road #88, Lin’an, Hangzhou, 311300, Zhejiang, China
2. Scion, Private Bag 3020, Rotorua, New Zealand
Abstract:

Purpose

The bamboo species Phyllostachys praecox has been planted in large areas of southern China for the production of edible bamboo shoots. In recent years, high rates of fertilizer application and heavy winter mulch have been employed to achieve an earlier harvest of the shoots and a better economic return. Little is known about the potential impact of these intensive management practices on the receiving environment. Therefore, a field experiment was conducted to quantify the effect of winter mulch on soil CO2 efflux, which contributes to greenhouse gas emissions.

Materials and methods

The field study was established in 6-year-old P. praecox stands for the period between December 2006 and February 2007 in Lin’an County, Zhejiang Province, China. The treatments included a 200-mm mulch with rice straw and rice husks, and a control without mulch. Soil CO2 efflux rates and soil temperature changes were measured monthly and comparisons were made between the treatments.

Results and discussion

Soil CO2 efflux rates in the mulch treatment were 10.98 and 4.27 µmol m?2?s?1 in December 2006 and January 2007, respectively, which was eight times greater than soil CO2 efflux rates measured in the non-mulch control treatment in the corresponding months. The significantly higher temperature and increased dissolved organic carbon in the mulch treatment were considered to have contributed to the enhanced soil CO2 emission.

Conclusions

Heavy winter mulch in a P. praecox plantation can greatly enhance soil respiration rates due to increases in both soil temperature and readily mineralizable labile organic matter. The increased CO2 emissions from soil respiration under winter mulch treatments can potentially reduce the greenhouse gas emission mitigation function of the bamboo forest plantations. It is recommended that new management practices be developed to alleviate the impacts of winter mulch on the environment.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号