首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Variations of root hydraulic conductance of Fraxinus mandshurica seedlings in different concentrations of NH4NO3 solution
Authors:Hailong Sun  Chu Wu  Wenjing Xu  Zhengquan Wang
Institution:(1) College of Forestry, Northeast Forestry University, Harbin, 150040, China;(2) Horticulture Department, Yangtze University, Jingzhou, 434025, China
Abstract:Absorbing water from soil by roots in vascular plants is an important physiological function and plays an essential role on their water balance. The root hydraulic conductance (L P) determined by radical water transport inside the root is a major influence on the shoot water status, plant growth, and development. However, a few studies have focused on the effect of different substances on L P of roots, and the role of radical water transport was poorly understood. Based on the pressure-flux approach, this study used the roots of Fraxinus mandshurica seedlings with different treatments, i.e., distilled water, NH4NO3 solution, and HgCl2 to determine the effect of various substances on L P of roots. The objectives are: 1) to evaluate the difference in L P occurred between distilled water and NH4NO3 solution with various concentrations; and 2) to examine the changes of L P under distilled water and NH4NO3 solution with various concentrations after HgCl2 treatment. The results showed that L P of roots were 18.85×10−8 m/(s·MPa) in distilled water, 31.25–34.15×10−8 m/(s·MPa) in four NH4NO3 solutions (2, 4, 8 and 16 mmol/L), 14.69×10−8 m/(s·MPa) in distilled water after HgCl2-treated, and 9.63–13.57×10−8 m/(s·MPa) in four NH4NO3 solutions after HgCl2-treated, respectively. Aquaporins play an important role in regulating water uptake and transport in roots. NH4 + and NO3 could stimulate activity of aquaporins, and L P of roots in NH4NO3 solution was distinctly 77% higher than in distilled water. Nevertheless, Hg2+ can inhibit activity of aquaporins, and and L P of roots decreased 22% in distilled water and 68% in NH4NO3 solution after treatment by HgCl2 respectively. These evidences suggested that both Hg2+-sensitive aquaporins and ion channels existing in the protoplasm and vacuole membranes could regulate root water uptake, transport, and integral plant water balance. __________ Translated from Acta Phytoecologica Sinica, 2005, 29(5): 706–712 译自: 植物生态学报, 2005, 29(5): 706–712]
Keywords:root system  root hydraulic conductance  aquaporins  Fraxinus mandshurica
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号