首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Patch connectivity and genetic diversity conservation in the federally endangered and narrowly endemic plant species Astragalus albens (Fabaceae)
Authors:Maile C Neel  
Institution:

aDepartments of Plant Science and Landscape Architecture, and Entomology, 2116 Plant Sciences Building, University of Maryland, College Park, MD 20742, USA

Abstract:To evaluate the sufficiency of US federal critical habitat designations and a proposed conservation plan in promoting the long-term persistence of the endangered plant Astragalus albens, patterns of genetic diversity and landscape connectivity were examined. A. albens harbors substantial genetic variation and shows no evidence of historic bottlenecks, suggesting little risk of extinction due to genetic homogeneity (A = 2.40; P = 0.50) or inbreeding (f = ?0.08) within occurrences. Low genetic differentiation among occurrences (θp = 0.01) indicates relatively high gene flow or little genetic drift. The 91 patches of A. albens were connected into a single network at a distance of 2100 m; 94% of patches were <1000 m from at least one other patch. Managing ecological conditions that maintain large population sizes and connectivity among populations throughout the species’ ecological and geographic ranges will most likely conserve existing diversity. Both reserve networks partially accomplish these goals by including most extant occurrences and >89% of the aerial extent of the species, including the largest populations, and capturing all detected alleles. However, both conservation networks fail to conserve occurrences from one portion of the species’ range, possibly speeding loss of unique local adaptations. In addition, connectivity of the whole network is reduced with the 65 patches designated as critical habitat being connected at a distance of 6200 m and the proposed reserve sites being connected at a distance of 9500 m. Although total network connectivity would be reduced, connectivity at scales most relevant to gene flow (e.g., <1000 m) remains sufficiently in tact to provide a relatively promising outlook for species persistence.
Keywords:Endangered Species Act  Recovery planning  Conservation planning  Graph theory  Landscape genetics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号