首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Seawater causes rapid trace metal mobilisation in coastal lowland acid sulfate soils: Implications of sea level rise for water quality
Authors:Vanessa NL Wong  Scott G Johnston  Richard T Bush  Peter G Slavich
Institution:
  • a Southern Cross GeoScience, Southern Cross University; PO Box 157, Lismore NSW 2480, Australia
  • b Wollongbar Primary Industries Institute; Industry and Investment, New South Wales; 1243 Bruxner Highway, Wollongbar NSW 2477, Australia
  • Abstract:Coastal floodplains are highly vulnerable to inundation with saline water and the likelihood of inundation will increase with sea level rise. Sediment samples from floodplains containing coastal lowland acid sulfate soils (CLASS) in eastern Australia were subjected to increasing seawater concentration to examine the probable effects of sea level rise on acidity and metal desorption. Ten soils were mixed with synthetic seawater concentrations varying from 0% to 100% at a solid:solution ratio of 1:10 for 4 h. There was a slight decrease in pH (≈ 0.5 units) with increasing seawater concentration following treatment, yet, calculated acidity increased significantly. In most soil treatments, Al was the dominant component of the calculated acidity pool. Al dominated the exchange complex in the CLASS and, correspondingly, was the major metal ion desorbed. In general, concentrations of soluble and exchangeable Al, Fe2+, Ni, Mn and Zn in all soil extracts increased with increasing salinity. Increasing trace metal concentrations with increasing seawater concentration is attributed to the combined effects of exchange processes and acidity. The increasing ionic strength of the seawater treatments displaces trace metals and protons adsorbed on sediments, causing an initial decrease in pH. Hydrolysis of desorbed acidic metal cations can further contribute to acidity and increase mobilisation of trace metals. These findings imply that saline inundation of CLASS environments, even by relatively brackish water may cause rapid, shorter-term water quality changes and a pulse release of acidity due to desorption of acidic metal cations.
    Keywords:Sea level rise  Desorption  Seawater inundation  Metal mobilisation
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号