首页 | 本学科首页   官方微博 | 高级检索  
     检索      

滴灌条件下毒死蜱在土层中迁移转化规律及其对土壤微生物特性的影响
引用本文:何华,杨小春,张娇.滴灌条件下毒死蜱在土层中迁移转化规律及其对土壤微生物特性的影响[J].农业环境科学学报,2022,41(6):1296-1306.
作者姓名:何华  杨小春  张娇
作者单位:青岛农业大学资源与环境学院, 青岛市农村环境工程研究中心, 山东 青岛 266109
基金项目:国家自然科学基金项目(41301552,31101612);青岛农业大学高层次人才科研基金项目(6631110307)
摘    要:为了解滴灌条件下毒死蜱在土壤中的迁移转化规律,采用土柱模拟试验,研究了滴灌条件下种植作物、代森锌消毒和不同土壤含水率对毒死蜱的分布及土壤酶活性和土壤微生物生物量碳的影响。结果表明:施用于表层的毒死蜱在施用初期主要残留在10 cm以上土层,随着时间的增加,而发生降解并向下迁移。土壤中3,5,6-三氯-2-吡啶酚(TCP,毒死蜱的主要代谢产物)含量在0.1~1.5 mg·kg-1之间,施药30 d后,40 cm土层中毒死蜱和TCP均有检出。不同处理下,毒死蜱含量在10 cm以上土层存在较大差异,TCP含量在20 cm以上土层存在一定差异。消毒抑制毒死蜱的降解,作物根系促进土壤微生物繁殖,有利于毒死蜱的降解。土壤含水率对10 cm土层毒死蜱含量有较大影响,在未消毒和种植作物处理中,最强的毒死蜱降解分别发生在土壤含水率为80%和70%处理中。毒死蜱和TCP对微生物以抑制作用为主,不同处理的抑制程度不同。毒死蜱在低浓度时对过氧化氢酶和脲酶活性有激活作用,高浓度时存在抑制作用,作物的存在减弱了毒死蜱对两种酶活性的影响。毒死蜱的降解与土壤碱性磷酸酶活性有关,种植作物改变了毒死蜱和土壤碱性磷酸酶的分布。代森锌消毒对过氧化氢酶和脲酶活性有激活作用,对碱性磷酸酶活性有一定抑制作用。

关 键 词:滴灌  毒死蜱  3  5  6-三氯-2-吡啶酚(TCP)  酶活性  土壤微生物生物量碳
收稿时间:2021/11/12 0:00:00
修稿时间:2022/1/18 0:00:00

Migration and transformation of chlorpyrifos in soil and its influence on soil microbial characteristics under drip irrigation
HE Hu,YANG Xiaochun,ZHANG Jiao.Migration and transformation of chlorpyrifos in soil and its influence on soil microbial characteristics under drip irrigation[J].Journal of Agro-Environment Science( J. Agro-Environ. Sci.),2022,41(6):1296-1306.
Authors:HE Hu  YANG Xiaochun  ZHANG Jiao
Institution:Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
Abstract:A soil column simulation experiment was conducted to study the effects of crop planting, soil disinfection, and soil moisture on chlorpyrifos distribution and microbial characteristics in soil. The results demonstrated that chlorpyrifos primarily remained in the soil above 10 cm at the initial application stage, and it degraded and migrated downward over time. The content of 3, 5, 6-trichloro-2-pyridyl phenol(TCP, the key metabolite of chlorpyrifos)ranged from 0.1 mg·kg-1 to 1.5 mg·kg-1. Chlorpyrifos and TCP were detected in a 40 cm soil layer 30 days after application. Among different treatments, there were significant differences in chlorpyrifos content in the soil layer above 10 cm, and there were some differences in TCP concentration in the soil layer above 20 cm. Disinfection inhibited the chlorpyrifos degradation, and crop roots promoted the reproduction of soil microorganisms, which was conducive to the chlorpyrifos degradation. Soil water content had a significant influence on chlorpyrifos content in the 10 cm soil layer. The strongest chlorpyrifos degradation occurred when the soil water content was 80% and at 70% of the field capacity. In different treatments, chlorpyrifos and TCP primarily inhibited microorganisms, and the degree of inhibition was different among different treatments. Chlorpyrifos could activate the catalase and urease activities at low concentration and inhibit them at high concentration. The effect of chlorpyrifos on the catalase and urease activities was weakened by the presence of crops. The chlorpyrifos degradation was related to the activity of soil alkaline phosphatase. The distribution of chlorpyrifos and soil alkaline phosphatase changed when crops grew. Zineb could activate the catalase and urinary enzyme activities, and inhibit the alkaline phosphatase activity.
Keywords:drip irrigation  chlorpyrifos  3  5  6-trichloro-2-pyridyl phenol (TCP)  enzyme activity  soil microbial biomass carbon
点击此处可从《农业环境科学学报》浏览原始摘要信息
点击此处可从《农业环境科学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号