首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Purification and biochemical characterization of glutathione S-transferases from three strains of Liposcelis bostrychophila Badonnel (Psocoptera: Liposcelididae): Implication of insecticide resistance
Authors:Wei Dou
Institution:Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 1 Tiansheng Rd, Chongqing 400715, China
Abstract:Glutathione S-transferases (GSTs) catalyzing the conjugation of reduced glutathione (GSH) to a vast range of xenobiotics including insecticides were investigated in the psocid Liposcelis bostrychophila Badonnel. GSTs from susceptible and two resistant strains (DDVP-R for dichlorvos-resistant strain and PH3-R for phosphine-resistant strain) of L. bostrychophila were purified by glutathione-agarose affinity chromatography and characterized by their Michaelis-Menten kinetics towards artificial substrates, i.e., 1-chloro-2,4-dinitrobenzene (CDNB), in a photometric microplate assay. The specific activities of GSTs purified from two resistant strains were significantly higher than their susceptible counterpart. For the resistant strains, GSTs both showed a significantly higher affinity to the substrate GSH while a declined affinity to CDNB than those of susceptible strain. The inhibitory potential of ethacrynic acid was very effective with highest I50 value (the concentration required to inhibit 50% of GSTs activity) of 1.21 μM recorded in DDVP-R. Carbosulfan also exhibited excellent inhibitory effects on purified GSTs. The N-terminus of the purified enzyme was sequenced by Edman degradation, and the alignment of first 13 amino acids of the N-terminal sequence with other insect GSTs suggested the purified protein was similar to those of Sigma class GSTs.
Keywords:Glutathione S-transferases (GSTs)  Detoxification  Purification  Liposcelis bostrychophila  Inhibition  Psocoptera  Resistance  Ethacrynic acid
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号