首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Season-Dependent Fruit Loading: Effect on Nutrient Homeostasis of Tomato Plants
Authors:M K Darawsheh  G Zerva  D L Bouranis
Institution:1. National Agricultural Research Foundation, Agricultural Research Station of Palama-Karditsa , Palama-Karditsa, Greece;2. National Agricultural Research Foundation, Institute for Soil Classification and Mapping , Larissa, Greece;3. Department of Plant Biology , Plant Physiology Laboratory, Faculty of Agricultural Biotechnology, Agricultural University of Athens , Athens, Greece
Abstract:ABSTRACT

Greenhouse tomato plants were grown hydroponically during the period of lower temperatures of winter (LT) versus the period of higher temperatures of summer (HT). In these plants, the effect of season on fruit load was dramatic. In order to study the alterations season introduces to the developmental allocation of nutrients within the various organs, concentrations of total nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) were determined during each season at weekly intervals in the dry mass of leaves and roots and in the extract of upper, middle, and lower parts of the stem. The level of N/P ratio was always higher in the leaves than in the roots, and these differences were more intense during HT. The short-term changes of ratio in the leaves during HT and LT were positively related with the changes in temperature (r = 0.59 and 0.51 for HT and LT, respectively). In contrast, such correlations in the root were negative (r = ?0.54 and r = ?0.33 for HT and LT, respectively). The increase of temperature increased P uptake but not its translocation to upper plant parts. HT affected the translocation of N, K, Mg, and Ca more and their uptake less. Fruit load differentially affected the concentration of nutrients. In contrast to total N and K, Ca concentration in plant parts presented a positive relation with the increase of fruit load. Calcium and total N concentration (as opposed to P and micronutrient concentrations) were always higher in the leaves than in the roots. Under HT conditions, P was accumulated in roots in combination with high concentrations of Fe, Zn, and Mn. On the other hand, K and N were accumulated in the roots during the period of low temperature in winter. Calcium and K compared with other nutrients presented a pronounced tendency to be transported toward the top of the stem during HT, and their extractable concentration in the upper part of stem presented a significant increase during summer. Extractable K concentration was two to nine times higher than that of the other macronutrients. Our data suggest that the extractable concentration of nutrients of the stem is a good index for the diagnosis of the mineral nutritional status of the plant.
Keywords:tomato  seasonal changes  fruit loading  leaves  roots and stem nutrimental dynamic  macronutrients  micronutrients
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号