首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cadmium Effects in Sunflower: Nutritional Imbalances in Plants and Calluses
Authors:Helena Azevedo  Clara Gomes Glória Pinto  Conceição Santos
Institution:Department of Biology , University of Aveiro , Aveiro, Portugal
Abstract:The effects of cadmium (Cd) exposure on sunflower (Helianthus annuus L.) nutrient accumulation remain unclear. However, studies concerning crop improvement for Cd tolerance suggest the use of biotechnology techniques such as tissue culture. It is still unknown whether in vitro cells respond to Cd exposure in a way similar to plants. In this paper, the objectives were (1) to characterize the effects of Cd exposure in macronutrient and micronutrient accumulation in different sunflower organs/tissues and (2) to compare the behavior of two culture systems (plants vs. tissue culture) regarding Cd and nutrient accumulation. To achieve these aims, sunflower plants were grown hydroponically in the presence of Cd (at levels of 0, 5, 50, and 500 μ M). For in vitro cultures, seeds were germinated axenically and leaf explants were then grown on Murashige and Skoog medium (MS). One-month-old calluses were grown on MS medium containing 0, 5, 50, and 500 μ M Cd. After 21 d of exposure to 500 μ M, all plants were dead. The contents of macro- and micronutrients and of Cd were determined by ICPS in 18 d-exposed plants and calluses and in calluses exposed for six months to 50 μ M Cd. At day 18, Cd content increased in leaves, roots, and calluses. Cadmium exposure also decreased the contents of magnesium (Mg), calcium (Ca), iron (Fe), and manganese (Mn) in roots and of Mg, Ca, copper (Cu), Fe, and Mn in shoots. Exposed calluses suffered decreases only in Mg, Ca, and Mn contents. The contents of most of these nutrients in six-month-exposed calluses were similar to those of the control calluses, indicating that these long-term exposed in vitro cells developed mechanisms for regulating the effects of Cd on the accumulation of nutrients.
Keywords:Bioindicators  Aco  POD  CAT  FeSOD  FeCH-R  Genotype  Graft  Rootstock  Scion
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号