首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nitrogen additions inhibit nitrification in acidic soils in a subtropical pine plantation: effects of soil pH and compositional shifts in microbial groups
Authors:Liang Kou  Xinyu Zhang  Huimin Wang  Hao Yang  Wei Zhao  Shenggong Li
Abstract:Plantation forests play a pivotal role in carbon sequestration in terrestrial ecosystems, but enhanced nitrogen(N) deposition in these forests may affect plantation productivity by altering soil N cycling. Hence,understanding how simulated N deposition affects the rate and direction of soil N transformation is critically important in predicting responses of plantation productivity in the context of N loading. This study reports the effects of N addition rate(0, 40, and 120 kg N ha~(-1) a~(-1)) and form(NH_4Cl vs. NaNO_3) on net N mineralization and nitrification estimated by in situ soil core incubation and on-soil microbial biomass determined by the phospholipid fatty acid(PLFA) method in a subtropical pine plantation. N additions had no influences on net N mineralization throughout the year. Net nitrification rate was significantly reduced by additions of both NH_4Cl(71.5) and NaNO_3(47.1%) during the active growing season, with the stronger inhibitory effect at high N rates. Soil pH was markedly decreased by 0.16 units by NH_4Cl additions. N inputs significantly decreased the ratio of fungal-to-bacterial PLFAs on average by 0.28(49.1%) in November. Under NH_4Cl additions, nitrification was positively related with fungal biomass and soil pH. Under NaNO_3 additions,nitrification was positively related with all microbial groups except for bacterial biomass. We conclude that simulated N deposition inhibited net nitrification in the acidic soils of a subtropical plantation forest in China,primarily due to accelerated soil acidification and compositional shifts in microbial functional groups. These findings may facilitate a better mechanistic understanding of soil N cycling in the context of N loading.
Keywords:Acidification  Atmospheric nitrogen deposition  Microbial functional group  Nitrification  Soil nitrogen transformation
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号