首页 | 本学科首页   官方微博 | 高级检索  
     检索      

青藏高原东南缘老芒麦自然居群遗传多样性的SRAP和SSR分析
引用本文:鄢家俊,白史且,张新全,常丹,游明鸿,张昌兵,李达旭.青藏高原东南缘老芒麦自然居群遗传多样性的SRAP和SSR分析[J].草业学报,2010,19(4):122-134.
作者姓名:鄢家俊  白史且  张新全  常丹  游明鸿  张昌兵  李达旭
作者单位:1.四川农业大学草业科学系,四川 雅安 625014; 2.四川省草原科学研究院,四川 成都 611731
基金项目:国家公益性农业行业专项项目,现代农业产业技术体系建设专项资金项目,国家"十一五"科技支撑计划项目 
摘    要:基于SRAP和SSR分子标记分析了青藏高原东南缘8个老芒麦自然居群遗传变异及群体遗传结构,获得下述结果:1)16对SRAP引物在90个单株中共扩增出384条可统计条带,其中多态性条带334条,占86.98%;16个SSR位点共检测出等位变异221个,平均每个位点13.8个,其中具有多态性的位点数192个,占86.88%。2)2种分子标记检测到老芒麦居群水平的基因多样性(He)分别为0.1092和0.1296,而物种水平的基因多样性达0.2434和0.3732。3)基于2种标记的Nei氏遗传分化指数Gst(0.5525和0.5158)表明老芒麦居群出现了较大程度的遗传分化,居群间的基因流非常有限,分别为0.4050和0.4694,老芒麦的遗传变异主要分布在居群间,居群内变异相对较小,Shannon多样性指数和分子方差变异(AMOVA)分析显示了相似的结果。4)基于聚类分析结果表明各居群间存在较为明显的地理分化,8个居群分化为采集地范围内的南、北和中部3个分支。通过对老芒麦遗传多样性和遗传结构的分析提出了对该物种遗传多样性的保护策略。

关 键 词:老芒麦  遗传多样性  群体遗传结构  SRAP  SSR
收稿时间:1900-01-01;

Genetic diversity of native Elymus sibiricus populations in the Southeastern Margin of Qinghai-Tibetan Plateau as detected by SRAP and SSR markers
YAN Jia-jun,BAI Shi-qie,ZHANG Xin-quan,CHANG Dan,YOU Ming-hong,ZHANG Chang-bing,LI Da-xu.Genetic diversity of native Elymus sibiricus populations in the Southeastern Margin of Qinghai-Tibetan Plateau as detected by SRAP and SSR markers[J].Acta Prataculturae Sinica,2010,19(4):122-134.
Authors:YAN Jia-jun  BAI Shi-qie  ZHANG Xin-quan  CHANG Dan  YOU Ming-hong  ZHANG Chang-bing  LI Da-xu
Institution:1.Department of Grassland, Sichuan Agricultural University, Ya’an 625014, China; 2.Sichuan Grassland Science Academy, Chengdu 611731, China
Abstract:The objectives of the study were to quantify the genetic variability in eight natural populations of Elymus sibiricus collected from Southeastern Margin of Qinghai-Tibetan Plateau, and to explore its genetic variation distribution pattern. Sequence-related amplified polymorphism (SRAP) markers and simple sequence repeat (SSR) markers were employed. The follow results were obtained: 1) A total of 384 fragments were identified with 16 SRAP primers sets, of which 86.98% were polymorphic. Meanwhile, a total of 221 alleles were detected at 16 SSR loci, with 192 (86.88%) being polymorphic, indicating considerable genetic variation at the species level. 2) The mean gene diversity (He) was estimated to be 0.109 2 and 0.129 6 within populations detected by SRAP and SSR markers respectively, and 0.243 4 and 0.373 2 at the species level. 3) A high level of genetic differentiation among populations was detected based on Nei’s genetic diversity analysis both in SRAP (Gst=0.552 5) and SSR (Gst=0.515 8) markers, and an indirect estimate of the number of migrants per generation (0.405 0 by SRAP markers, 0.469 4 by SSR markers) showed that gene flow was low among populations. 4) Shannon’s index analysis and AMOVA analysis displayed the same result that mainly genetic variation of E. sibiricus existed among the populations. In addition, a geographical pattern of population differentiation, where the populations from south, north and middle area of sampling sites were clearly separated from each other, was revealed by cluster analysis. Based on the genetic information available for the native E. sibiricus, some conservation strategies were proposed.
Keywords:SRAP  SSR
本文献已被 万方数据 等数据库收录!
点击此处可从《草业学报》浏览原始摘要信息
点击此处可从《草业学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号