首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The forms and availability to plants of soil potassium as related to mineralogy for upland Oxisols and Ultisols from Thailand
Authors:Timtong Darunsontaya  Anchalee Suddhiprakarn  Irb Kheoruenromne  Nattaporn Prakongkep  Robert J Gilkes
Institution:1. Department of Soil Science, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand;2. School of Earth and Environment, Faculty of Natural and Agricultural Sciences, University of Western Australia, Crawley, WA 6009, Australia
Abstract:Potassium (K) deficiency is widespread in crops on highly weathered upland soils under a tropical monsoonal climate. Critical assessment of the forms of K in soils and of the ability of soils to release K for plant uptake is important for the proper management of K in crop production. The relationships between different pools of K were investigated as a function of silt and clay mineralogy for 14 upland Oxisols and 26 upland Ultisols soils from Thailand. Most soils contained no K-minerals in the silt fraction. XRD showed that kaolinite is the dominant clay mineral with variously minor or moderate amounts of illite, hydroxy-Al interlayered vermiculite and smectite present in some soils. For some soils, both conventional and synchrotron XRD were unable to detect illite. Analytical TEM including EFTEM of individual clay crystals showed that clay in the apparently illite-free samples contained very small amounts of illite. Many kaolinite particles appear to contain K which may be present in illite interleaved with kaolinite crystals. A glasshouse K-depletion experiment was conducted to assess the K supply capacity and changes in chemical forms of K and K-minerals using exhaustive K depletion by Guinea grass (Panicum maximum). Potassium deficiency symptoms and mortality of plants occurred on light textured soils, whereas plants survived for six harvests for Oxisols with clay texture, relatively high CEC and higher NH4OAc-K (exchangeable K plus water-soluble K). There is a strong linear relationship of unit slope between NH4OAc-K and cumulative K uptake by plants indicating that NH4OAc-K is a major form of K available to plants. Thus K-bearing minerals contributed little K to plants over the time scale of the experiment and XRD patterns of whole soil samples, silt and clay from soils after cropping mostly showed no change from those for the initial soil. An exception was for a single surface soil clay where a minor amount of smectite was formed from illite by K release to plants.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号