首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nitrogen uptake in riparian plant communities across a sharp ecological boundary of salmon density
Authors:DD?Mathewson  MD?Hocking  Email author" target="_blank">TE?ReimchenEmail author
Institution:(1) Department of Biology, University of Victoria, PO Box 3020, Victoria, British Columbia, Canada, V8W 3N5
Abstract:

Background

Recent studies of anadromous salmon (Oncorhynchus spp.) on the Pacific Coast of North America indicate an important and previously unrecognized role of salmonid nutrients to terrestrial biota. However, the extent of this uptake by primary producers and consumers and the influences on community structure remain poorly described. We examine here the contribution of salmon nutrients to multiple taxa of riparian vegetation (Blechnum spicant, Menziesii ferruginea, Oplopanax horridus, Rubus spectabilis, Vaccinium alaskaense, V. parvifolium, Tsuga heterophylla) and measure foliar δ15N, total %N and plant community structure at two geographically separated watersheds in coastal British Columbia. To reduce potentially confounding effects of precipitation, substrate and other abiotic variables, we made comparisons across a sharp ecological boundary of salmon density that resulted from a waterfall barrier to salmon migration.

Results

δ15N and %N in foliage, and %cover of soil nitrogen indicators differed across the waterfall barrier to salmon at each watershed. δ15N values were enriched by 1.4‰ to 9.0‰ below the falls depending on species and watershed, providing a relative contribution of marine-derived nitrogen (MDN) to vegetation of 10% to 60%. %N in foliar tissues was slightly higher below the falls, with the majority of variance occurring between vegetation species. Community structure also differed with higher incidence of nitrogen-rich soil indicator species below the waterfalls.

Conclusions

Measures of δ15N, %N and vegetation cover indicate a consistent difference in the riparian community across a sharp ecological boundary of salmon density. The additional N source that salmon provide to nitrogen-limited habitats appears to have significant impacts on the N budget of riparian vegetation, which may increase primary productivity, and result in community shifts between sites with and without salmon access. This, in turn, may have cascading ecosystem effects in forests adjacent to salmon streams.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号