首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Compost enhances plant resistance against the bacterial wilt pathogen Ralstonia solanacearum via up-regulation of ascorbate-glutathione redox cycle
Authors:Sahar A Youssef  Kamel A H Tartoura
Institution:1. Botany Department, Faculty of Agriculture, Suez Canal University, Ismailia, 41522, Egypt
Abstract:The interactions between the pathogen Ralstonia solanacearum and potato Solanum tuberosum plants were studied to investigate the reactive oxygen species metabolic system and ascorbate (ASC)-glutathione (GSH) redox cycle in response to compost application. Single potato eyepieces were germinated and grown in pots containing sandy soil with or without compost at a rate of 7.5 g kg?1 soil. Non-compost- and compost-treated plants (CTP) were inoculated with R. solanacearum 25 days after planting and then analyzed after 10 days, unless otherwise stated. The present results revealed that pathogen infection caused a remarkable decrease in plant growth related parameters and productivity and an increase in disease incidence. However, under these conditions compost had substantially improved plant growth and decreased disease incidence and bacterial population. R. solanacearum resulted in significant enhancement in the activities of NADPH oxidase, lipoxygenase, the production rate of superoxide and hydroxyl radicals, levels of hydrogen peroxide, membrane lipid peroxidation, and protein oxidation indicating the induction of oxidative stress in potato roots. However, the pathogen-mediated enhancement in indices of oxidative stress was considerably decreased by compost application, which enhanced the activities of ascorbate peroxidase (APX, EC 1.11.1.11), monodehydroascorbate reductase (MDHAR, EC 1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and glutathione reductase (GR, EC 1.6.4.2) in infected potato plants, implying a better ROS-scavenging activity. Data also indicated that there were general increases in ASC and GSH content in infected compost treated plants, but non-compost treated ones significantly had lower levels of such redox metabolites. In addition, significantly higher ratios of ASC/DHA (dehydroascorbate) and GSH/GSSG (glutathione disulphide) were generally found in CTP than in non-compost treated-ones. The obtained results suggest that compost provides effective protection against the Ralstonia bacterial pathogen via up-regulation of the capacity of the ASC-GSH cycle and modulation of the cellular redox status, thereby eliminating ROS damage and sustaining membrane stability.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号