首页 | 本学科首页   官方微博 | 高级检索  
     检索      

我国设施菜田土壤重金属含量特征与影响因素
引用本文:贾丽,乔玉辉,陈清,李花粉,邵小明,马和平.我国设施菜田土壤重金属含量特征与影响因素[J].农业环境科学学报,2020,39(2):263-274.
作者姓名:贾丽  乔玉辉  陈清  李花粉  邵小明  马和平
作者单位:西藏农牧学院高原生态研究所,西藏 林芝 860000;中国农业大学资源与环境学院,生物多样性与有机农业北京市重点实验室,北京 100193;西藏林芝高山森林生态系统国家野外科学观测研究站,西藏 林芝 860000;西藏高原森林生态教育部重点实验室,西藏 林芝 860000;中国农业大学资源与环境学院,生物多样性与有机农业北京市重点实验室,北京 100193;西藏农牧学院高原生态研究所,西藏 林芝 860000;中国农业大学资源与环境学院,生物多样性与有机农业北京市重点实验室,北京 100193;西藏农牧学院高原生态研究所,西藏 林芝 860000;西藏林芝高山森林生态系统国家野外科学观测研究站,西藏 林芝 860000;西藏高原森林生态教育部重点实验室,西藏 林芝 860000
基金项目:现代农业产业技术体系专项资金项目(CARS-23-B16)
摘    要:为调查我国设施菜田土壤重金属污染状况,探讨种植年限、土壤有机碳及全氮等因素对设施菜田土壤重金属含量的影响,以我国设施菜田土壤为研究对象,通过文献查阅和土壤样品采集两种方式,在全国和黄淮海与环渤海设施蔬菜主产区,分别获取土壤401组/233组和548个/310个样本点数据,利用数理统计、相关性及多元统计分析等方法定量描述了我国设施菜田土壤重金属积累及污染特征,并进行了土壤重金属污染影响因素分析。结果分析表明:在全国范围内,文献资料中的设施菜田土壤Cd、Pb、As、Cr、Hg、Cu、Zn、Ni平均含量分别为0.32、24.9、8.45、83.6、0.05、29.9、70.7、27.4mg kg-1,超标率排序为Cd(30.5%)>Cu(9.8%)>C(r7.2%)>Zn(4.8%)>Pb(4.7%)>As(3.7%),在采集的设施菜田土壤样品中,八种重金属平均含量分别为0.13、21.9、6.48、41.9、0.09、23.6、72.1、21.4 mg kg-1,超标率排序为Cd(5.3%)>Cu(1.8%)>As(1.6%)>Zn(0.9%)>Pb(0.6%)>Cr(0.6%)。在黄淮海与环渤海设施蔬菜主产区,文献资料中的设施菜田土壤Cd、Pb、As、Cr、Hg、Cu、Zn、Ni平均含量分别为0.30、25.9、8.56、67.1、0.08、33.3、79.1、32.5 mg kg-1,超标率排序为Cd(25%)>Cu(10.4%)>C(r9.9%)>Pb(6.3%)>Zn(2.2%)>As(2.1%),在采集的设施菜田土壤样品中,八种重金属平均含量分别为0.13、22.8、5.93、43.5、0.08、23.1、69.3、19.4mg kg-1,超标率排序为Cd(3.1%)>Cu(2.1%)>Cr(2.0%)>As(1.2%)>Pb(0.6%)>Zn(0.5%)。而Hg、Ni基本都不超标。随种植时间的延长,设施菜田土壤中Cd、As、Cu、Zn含量呈逐步累积状态,文献来源的土壤Cd在种植21~25年(3.60mg kg-1),土壤Cu、Zn含量在26~30年(80.3mg kg-1和180mg kg-1)达到最高值;在采集的土壤样品中,Cd含量分别在种植16~20年(0.19mg kg-1)、As、Cu、Zn在21~25年(16.0、53.6mg kg-1和131mg kg-1)达到最高值。相关性分析表明,设施菜田土壤Cd含量与有机碳呈显著正相关,Cu、Zn含量与有机碳、全氮、速效磷、速效钾呈显著正相关,结合肥料中重金属含量进一步验证了磷肥和粪肥投入是设施菜田土壤重金属的重要来源。因此,为保证土壤环境及蔬菜质量安全,应注重肥料等污染源的控制。

关 键 词:设施菜田  土壤  重金属  种植年限  肥料投入
收稿时间:2019/9/17 0:00:00

Characteristics and affecting factors of heavy metals content in greenhouse vegetable soils in China
JIA Li,QIAO Yu-hui,CHEN Qing,LI Hua-fen,SHAO Xiao-ming and MA He-ping.Characteristics and affecting factors of heavy metals content in greenhouse vegetable soils in China[J].Journal of Agro-Environment Science( J. Agro-Environ. Sci.),2020,39(2):263-274.
Authors:JIA Li  QIAO Yu-hui  CHEN Qing  LI Hua-fen  SHAO Xiao-ming and MA He-ping
Institution:Research Institute of Tibet Plateau Ecology, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China;College of Resources and Environmental Sciences, Key Laboratory of Biodiversity and Organic Farming of Beijing City, China Agricultural University, Beijing 100193, China;National Key Station of Field Scientific Observation & Experiment of Alpine Forest Ecology System in Nyingchi Tibet, Nyingchi 860000, China;Tibet Key Laboratory of Forest Ecology, Ministry of Education, Nyingchi 860000, China,College of Resources and Environmental Sciences, Key Laboratory of Biodiversity and Organic Farming of Beijing City, China Agricultural University, Beijing 100193, China,College of Resources and Environmental Sciences, Key Laboratory of Biodiversity and Organic Farming of Beijing City, China Agricultural University, Beijing 100193, China,College of Resources and Environmental Sciences, Key Laboratory of Biodiversity and Organic Farming of Beijing City, China Agricultural University, Beijing 100193, China,Research Institute of Tibet Plateau Ecology, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China;College of Resources and Environmental Sciences, Key Laboratory of Biodiversity and Organic Farming of Beijing City, China Agricultural University, Beijing 100193, China and Research Institute of Tibet Plateau Ecology, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China;National Key Station of Field Scientific Observation & Experiment of Alpine Forest Ecology System in Nyingchi Tibet, Nyingchi 860000, China;Tibet Key Laboratory of Forest Ecology, Ministry of Education, Nyingchi 860000, China
Abstract:To quantitatively explore the effects of heavy metal accumulation and the potential corresponding factors(e.g., planting years, DOC, and TN etc.), the nationwide 401 sets of data from literatures and 548 soil samples, the Huang-Huai-Hai and Bohai Rim region 233 sets of data from literatures and 310 soil samples were collected and analyzed. Results showed that in the nationwide, the content of soil Cd, Pb, As, Cr, Hg, Cu, Zn, and Ni from literatures was 0.32, 24.9, 8.45, 83.6, 0.05, 29.9, 70.7, and 27.4 mg·kg-1, respectively. Furthermore, compared with Chinese Soil Quality Criterion(GB 15618-2018), about 30.5%, 9.8%, 7.2%, 4.8%, 4.7%, and 3.7% of total soil samples exceeded the threshold of Cd, Cu, Cr, Zn, Pb, As. The content of soil Cd, Pb, As, Cr, Hg, Cu, Zn, and Ni from collected soil samples was 0.13, 21.9, 6.48, 41.9, 0.09, 23.6, 72.1, 21.4 mg·kg-1, respectively, and the ratios of exceeding threshold were 5.3%, 1.8%, 1.6%, 0.9%, 0.6%, and 0.6% for Cd, Cu, As, Zn, Pb, Cr respectively. In the Huang-Huai-Hai and Bohai Rim region, the content of soil Cd, Pb, As, Cr, Hg, Cu, Zn, and Ni from literatures was 0.30, 25.9, 8.56, 67.1, 0.08, 33.3, 79.1, and 32.5 mg·kg-1, respectively. Furthermore, compared with Chinese Soil Quality Criterion(GB 15618-2018), about 25%, 10.4%, 9.9%, 6.3%, 2.2%, and 2.1% of total soil samples exceeded the threshold of Cd, Cu, Cr, Pb, Zn, As. The content of soil Cd, Pb, As, Cr, Hg, Cu, Zn, and Ni from collected soil samples was 0.13, 22.8, 5.93, 43.5, 0.08, 23.1, 69.3, 19.4 mg·kg-1, respectively, and the ratios of exceeding threshold were 3.1%, 2.1%, 2.0%, 1.2%, 0.6%, and 0.5% for Cd, Cu, Cr, As, Pb, Zn respectively. However, both Hg and Ni from literature data and soil samples did not exceed the standard. The contents of Cd, As, Cu and Zn in soil gradually accumulate with the vegetable planting years. The data from literature showed that the soil with 21~25 planting years has the highest Cd accumulation(3.60 mg·kg-1), and the soil with 26~30 years has the highest Cu(80.3 mg· kg-1)and Zn(180 mg·kg-1), respectively. The data from collected soil samples showed that the highest Cd content appeared in the soil with planting years of 16~20 years(0.19 mg·kg-1)and the highest As(16.0 mg·kg-1), Cu(53.6 mg·kg-1), and Zn(131 mg·kg-1)content appeared in the soil with 21~25 planting years. Correlation analysis showed that the content of Cd and organic carbon was significant positive correlated, the content of Cu and Zn was significant positive correlated with organic carbon, total nitrogen, available phosphorus, and available potassium. The heavy metals content of the fertilizer verified that phosphate fertilizer and manure were important sources of heavy metals in greenhouse vegetable soils. Measures should be taken to control the pollution sources to ensure the soil environment and vegetable quality and safety.
Keywords:greenhouse vegetable  soil  heavy metal  planting years  fertilizer inputs
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《农业环境科学学报》浏览原始摘要信息
点击此处可从《农业环境科学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号