首页 | 本学科首页   官方微博 | 高级检索  
     检索      

装配式主动蓄热墙体日光温室热性能分析
引用本文:鲍恩财,申婷婷,张勇,曹凯,曹晏飞,陈丹艳,何斌,邹志荣.装配式主动蓄热墙体日光温室热性能分析[J].农业工程学报,2018,34(10):178-186.
作者姓名:鲍恩财  申婷婷  张勇  曹凯  曹晏飞  陈丹艳  何斌  邹志荣
作者单位:西北农林科技大学园艺学院农业部西北设施园艺工程重点实验室;农业部长江中下游设施农业工程重点实验室;西北农林科技大学水利与建筑工程学院
基金项目:宁夏回族自治区重点研发计划重大项目(2016BZ0901);陕西省科技统筹创新工程项目(2016KTCL02-02)
摘    要:主动蓄热墙体日光温室作为节能日光温室的一种发展形势,具有较好的蓄放热效果,但施工速度慢、建造成本高。该文采用不同施工工艺建造装配式主动蓄热墙体,对传统主动蓄热墙体日光温室(G1)、回填装配式主动蓄热墙体日光温室(G2)、模块装配式主动蓄热墙体日光温室(G3)进行冬季室内环境测试。试验结果表明,连续晴天条件下,G1、G2、G3的夜间平均气温分别为15.2、16.0、17.3℃,连续阴天条件下,3座温室的夜间平均气温分别为11.3、12.9、13.0℃;连续31 d(2017-12-22至2018-01-21)的测试结果分析表明3座温室的气温总体表现为G3略优于G2,G3、G2均优于G1;G1、G2、G3在典型晴天蓄热体厚度分别为700~800、800~900、700~800 mm,在典型阴天蓄热体厚度分别为300~400、500~600、500~600 mm,G2、G3蓄热体厚度较G1大;G1的每平方米建筑成本为461.1元,G2、G3分别较G1降低了71.2、162.1元;运行成本表现为G1G2G3。综上,G3的空气及墙体的温度与G2差异不大,但均优于G1,可满足番茄的越冬生产。因此,装配式日光温室主动蓄热墙体的技术方案可行,且成本较低,在适宜日光温室发展的地区具有一定的推广价值。

关 键 词:温室  墙体  温度  日光温室  主动蓄热  装配式  蓄热体
收稿时间:2018/1/31 0:00:00
修稿时间:2018/4/16 0:00:00

Thermal performance analysis of assembled active heat storage wall in Chinese solar greenhouse
Bao Encai,Shen Tingting,Zhang Yong,Cao Kai,Cao Yanfei,Chen Danyan,He Bin and Zou Zhirong.Thermal performance analysis of assembled active heat storage wall in Chinese solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering,2018,34(10):178-186.
Authors:Bao Encai  Shen Tingting  Zhang Yong  Cao Kai  Cao Yanfei  Chen Danyan  He Bin and Zou Zhirong
Institution:1. College of Horticulture, Northwest A&F University, Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling 712100, China; 2. Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Nanjing 210014, China;,1. College of Horticulture, Northwest A&F University, Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling 712100, China;,1. College of Horticulture, Northwest A&F University, Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling 712100, China;,1. College of Horticulture, Northwest A&F University, Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling 712100, China; 2. Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Nanjing 210014, China;,1. College of Horticulture, Northwest A&F University, Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling 712100, China;,1. College of Horticulture, Northwest A&F University, Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling 712100, China;,3. College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China and 1. College of Horticulture, Northwest A&F University, Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling 712100, China; 2. Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Nanjing 210014, China;
Abstract:
Keywords:greenhouse  wall  temperature  solar greenhouse  active heat storage  assembled  storage body
本文献已被 CNKI 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号