首页 | 本学科首页   官方微博 | 高级检索  
     检索      

全膜微垄沟播对寒旱区春小麦苗期土壤水热环境及光合作用的影响
基金项目:National Key Research and Development Program of China(2018YFD0200403);National Natural Science Foundation of China(31560355);Science and Technology Innovation Projects of the Gansu Academy of Agricultural Sciences(2020GAAS32)
摘    要:克服春季寒旱生境限制是提高西北黄土高原寒旱区春小麦产量的关键要素之一,为了明确全膜微垄沟播对春小麦苗期土壤温度和水分的影响,明确水热条件改善对春小麦苗期光合作用的调节机制,2016—2018年在西北黄土高原寒旱区开展大田定位试验,以陇春35号为试验材料,设全膜微垄沟播(PRF)、全膜覆土穴播(PMS)和露地穴播(CK)3个处理,分别在春小麦播种后18、25和32 d测定土壤温度和土壤含水量、春小麦生物量、叶片SPAD、光合速率、蒸腾速率等,计算土壤贮水量、阶段耗水量、生长速率等。研究结果表明,在春小麦播种后18、25和32 d, PRF和PMS在0~25 cm土层平均土壤温度分别较CK提高3.6°C、3.0°C、2.0°C和2.9°C、2.5°C、1.7°C;在播种后18 d和25d,PRF处理在0、5、10cm土层的土壤温度较PMS提高1.3°C、0.9°C、0.9°C和0.8°C、0.7°C、0.7°C。PRF和PMS 0~40 cm土壤贮水量在3个阶段依次较CK提高7.3、9.7和12.6 mm和3.9、7.6和11.0 mm;在播种后18 d, PRF0~40 cm各土层依次较PMS提高1.1、0.9、0.8和0.6 mm。PRF和PMS苗期植株生物量、生长速率、叶片SPAD值、净光合速率、蒸腾速率均显著高于CK,且PRF均显著高于PMS,使PRF较PMS和CK分别增产9.1%和36.5%, WUE分别提高5.9%和30.8%。因此, PRF和PMS均能有效克服寒旱生境对小麦苗期生长的限制,促进小麦光合和生长,且PRF较PMS具有更为明显的效果。

收稿时间:2020-02-18

Effects of micro ridge-furrow with plastic mulching on soil hydrothermal environment and photosynthesis at seedling stage of spring wheat on cold rain-fed area
Authors:HOU Hui-Zhi  ZHANG Xu-Cheng  FANG Yan-Jie  YU Xian-Feng  WANG Hong-Li  MA Yi-Fan  ZHANG Guo-Ping  LEI Kang-Ning
Institution:Institute of Dry Land Farming, Gansu Academy of Agricultural Sciences / Key Laboratory of High Water Utilization on Dryland of Gansu Province, Lanzhou 730070, Gansu, China
Abstract:The solution against drought and cold in spring was one of the most important factors which increased the yield of spring wheat in northwest of Loess Plateau (104°36′E, 35°35′N). The objective of the study was to evaluate the effects of micro ridge-furrow with plastic mulching (PRF) on soil temperature and moisture at the seedlings stage and the regulative mechanism of PRF on soil thermal-moisture and photosynthesis of spring wheat. The field experiments had been conducted using Longchun 35 from 2016 to 2018 in cold rain-fed area of northwest Loess Plateau. The three treatments were: 1) micro ridge-furrow with whole field plastic mulching (PRF), 2) whole field soil-plastic mulching (PMS), and 3) without mulching (CK). The parameters including soil temperature, soil water content, above-ground biomass, leaf SPAD, photosynthetic and transpiration rate, the soil water storage (SWS), periodical evaportranspiration (ET), growth rate, and water use efficiency (WUE) were measured at 18, 25, and 32 days after sowing (DAS), respectively. The results were as follows: the mean soil temperature within 0-25 cm profile treated with PRF and PMS compared with CK, was increased by 3.6°C, 3.0°C, 2.0°C and 2.9°C, 2.5°C, 1.7°C respectively, while those treated PRF compared to PMS increased by 1.3°C, 0.9°C, 0.9°C and 0.8°C, 0.7°C, 0.7°C within 0, 5, and 10 cm profile at 18, 25, and 32 days. The SWS treated with PRF and PMS compared to CK was on the rise by 7.3, 9.7, 12.6 mm and 3.9, 7.6, and 11.0 mm within 0-40 cm profile at 18, 25, and 32 days, respectively. While those treated PRF within 0-40 cm profile with 10 cm intervals compared to PMS risen by 1.1, 0.9, 0.8, 0.6 mm. The parameters treated with PRF and PMS at seeding stage including plant biomass, growth rate, leaf SPAD value, net photosynthetic rate and transpiration rate were significantly higher than those of CK, while those of PRF higher than PMS. Moreover, the yield and WUE of PRF were increased by 9.1%, 36.5%, and 5.9%, 30.8% than those of PMS and CK, respectively. Therefore, the treatment of PRF and PMS could effectively improve the ability of photosynthesis and plant growth by overcoming the cold and drought situation at the seedling stage, and PRF treatment was more effective than PMS.
Keywords:micro ridge-furrow with plastic mulching  spring wheat  soil temperature  soil water storage  photosynthesis    
本文献已被 CNKI 等数据库收录!
点击此处可从《作物学报》浏览原始摘要信息
点击此处可从《作物学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号