首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mutation of a degS homologue in Enterobacter cloacae decreases colonization and biological control of damping-off on cucumber
Authors:Roberts Daniel P  Lohrke Scott M  McKenna Laurie  Lakshman Dilip K  Kong Hyesuk  Lydon John
Institution:United States Department of Agriculture - Agriculture Research Service, Beltsville, MD, USA. dan.roberts@ars.usda.gov
Abstract:We have been using mutagenesis to determine how biocontrol bacteria such as Enterobacter cloacae 501R3 deal with complex nutritional environments found in association with plants. E. cloacae C10, a mutant of 501R3 with a transposon insertion in degS, was diminished in growth on synthetic cucumber root exudate (SRE), colonization of cucumber seed and roots, and control of damping-off of cucumber caused by Pythium ultimum. DegS, a periplasmic serine protease in the closely related bacterium Escherichia coli K12, is required for the RpoE-mediated stress response. C10 containing wild-type degS from 501R3 or from E. coli K12 on pBeloBAC11 was significantly increased in growth on SRE, colonization of cucumber roots, and control of P. ultimum relative to C10 containing pBeloBAC11 alone. C10 and 501R3 were similar in sensitivity to acidic conditions, plant-derived phenolic compounds, oxidative stress caused by hydrogen peroxide, dessication, and high osmoticum; stress conditions potentially associated with plants. This study demonstrates a role for degS in the spermosphere and rhizosphere during colonization and disease control by Enterobacter cloacae. This study implicates, for the first time, the involvement of DegS and, by extension, the RpoE-mediated stress response, in reducing stress on E. cloacae resulting from the complex nutritional environments in the spermosphere and rhizosphere.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号