首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Root biomass and productivity in dominant plantation populations in the mountainous area in western Sichuan
Authors:Xingliang Liu  Qinyan Ma  Dongsheng Yang  Zuoming Shi  Yiming Su  Shiqiang Zhou  Shirong Liu  Yupo Yang
Institution:(1) College of Environment and Resources, Beijing Forestry University, Beijing, 100083, China;(2) Sichuan Academy of Forestry, Chengdu, 610081, China;(3) Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091, China;(4) China WWF Research and Conservation Centre for the Giant Panda, Wenchuan, 623005, China;(5) Sichuan Forestry Department, Chengdu, 610082, China
Abstract:This study investigated root biomass and productivity in dominant populations in western Sichuan, China. A total of 4 plots (Picea balfouriana plantation for 22 age in Maerkang, 9 trees, mean DBH of population for 10.4 cm and height for 10.5 m; Larix maxteriana plantation for 22 age in Wolong, 9 trees, mean DBH of population for 17.0 cm and height for 13.8 m; Abies fabri plantation for 35 age in Ebian, 18 trees, mean DBH of population for 14.1 cm and height for 11.9 m; Larix kaempferi plantation for 23 age in Miyaluo, 8 trees, mean DBH of population for 17.4 cm and height for 14.5 m; a 20 m×25 m plot located on each of the 4 types in western Sichuan, China) were randomly selected and excavated to a depth of 60 cm for each of the 4 plantation types. To estimate the root biomass of an individual tree using D 2 H, an exponential model was selected with the highest coefficient ranging from 0.94 to 0.99. The total root biomass per hm2 varied among plantation population types following the order: L. kaempferi (37.832 t/hm2) > A. fabri (24.907 t/hm2) > L. maxteriana (18.320 t/hm2) > P. balfouriana (15.982 t/hm2). The biomass fractions of a given root size class compared to the total root biomass differed among plantation population types. For all 4 studied plantation types, the majority of the roots were distributed in the top 40 cm of soil, e.g., 97.88% for P. balfouriana population, 96.78% for L. maxteriana, 95.65% for A. fabri, and 99.72 for L. kaempferi population. The root biomass fractions distributed in the top 20 cm of soil were 77.13% for P. balfouriana, 77.13% for L. maxteriana, 65.02% for A. fabri and 80.66% for L. kaempferi, respectively. The root allocation in the 0–20, 20–40, and 40–60 cm soil layers gave ratios of 34:12:1 for P. balfouriana, 24:6:1 for L. maxteriana, 15:7:1 for A. fabri, and 64:4:1 for L. kaempferi populations. The root biomass density of dominant plantation population was 10.782 t/(hm2·m) for P. balfouriana, 8.230 t/hm2·m) for L. maxteriana, 24.546 t/(hm2·m) for A. fabri, and 13.211 t/(hm2·m) for L. kaempferi population, respectively. The root biomass productivity was found to be 0.57 t/(hm2·year) for P. balfouriana, 0.83 t/(hm2·year) for L. maxteriana, 0.71 t/(hm2·year) for A. fabri and 1.64 t/(hm2·year) for L. kaempferi population, respectively. __________ Translated from Acta Ecologica Sinica, 2006, 26(2): 542–551 译自: 生态学报, 2006, 26(2): 542–551]
Keywords:biomass  mountainous area in western Sichuan  plantation population  biomass density  productivity  root system  Picea balfouriana  Larix maxteriana  Abies fabri  Larix kaempferi
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号