首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Aboveground biomass response to increasing nitrogen deposition on grassland on the northern Loess Plateau of China
Authors:Xiangwei Han  Atsushi Tsunekawa  Mitsuru Tsubo  Shiqing Li
Institution:1. Arid Land Research Center , Tottori University , Hamasaka 1390, Tottori, 680-0001, Japan;2. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences , Northwest A&3. F University , Yangling, Shaanxi, 712100, China xiangweihan@yahoo.com;5. Arid Land Research Center , Tottori University , Hamasaka 1390, Tottori, 680-0001, Japan;6. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences , Northwest A&7. F University , Yangling, Shaanxi, 712100, China
Abstract:Abstract

The fragile ecosystem of China's Loess Plateau is being exposed to increasing atmospheric nitrogen deposition but little information about the response of the region's natural vegetation is currently available. We studied the responses of aboveground biomass (AGB) to simulated nitrogen deposition in a field experiment conducted on natural grassland on sunny and shady slopes. Three levels of simulated nitrogen deposition were applied, and two treatments with phosphorus were included to test for secondary phosphorus limitation. For the same level of nitrogen deposition, grass generally grew better on the shady slope than on the sunny slope. Compared to a control treatment with no additional nitrogen, we found: (1) the 2.5 g N m?2 yr?1 treatment significantly increased biomass only on the sunny slope; (2) the total AGB increased significantly in the 5 g N m?2 yr?1 treatment on both the shady slope (by 31%) and the sunny slope (by 25%); and (3) for 10 g N m?2 yr?1, AGB was also significantly increased, however, phosphorus limitation became more apparent, and soil nitrate N levels increased significantly, suggesting nitrogen saturation and the potential for nitrate pollution. The AGB of Stipa bungeana (the dominant grass) was significantly increased by nitrogen, but not by phosphorus. The biomass of the second dominant species Lespedeza davurica Schindl., was not affected by increased nitrogen but addition of phosphorus had some positive impact. Therefore, nitrogen deposition was proven to have effects on plant growth in our study area on the Loess Plateau of China, but high level of nitrogen deposition would result in P limitation. Furthermore, increasing nitrogen deposition is likely to induce diversity change.
Keywords:Lespedeza davurica  nitrate N  phosphorus  semi-arid region  Stipa bungeana
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号