首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Changes in chemical and biological properties of a sodic clay subsoil with addition of organic amendments
Authors:GJ Clark  N Dodgshun
Institution:Department of Agricultural Sciences, La Trobe University, Bundoora (Melbourne), Victoria 3086, Australia
Abstract:An experiment was performed to examine the chemical and biological effects on high clay sodic subsoil following the incorporation and incubation with organic amendments. The main treatments consisted of amendments with wheat shoots, lucerne pellets and peat, and these were compared to gypsum addition. Additional treatments were residues of chickpea and canola, chicken manure and sawdust. All materials were finely ground and added to crushed and sieved soil at the rate of 1% by weight. Wheat, canola and chickpea residues and chicken manure resulted in modest reductions in soil sodicity. Carbon and N mineralization were related to the soluble C/total N ratio in the amendment. The initial mineralization of wheat amendment was rapid due to its soluble C content, but then slowed to have the lowest loss, of around one third of added C, of all the plant residues after 174 days. In comparison, lucerne-amended soil increased total N and lost almost half of its C after the 174-day incubation. The canola stubble amendment showed the highest carbon loss, losing 64% of its added C. The addition of gypsum resulted in high soil electrical conductivity which suppressed respiration, compared to the control soil, indicating a detrimental effect on microbial activity due to the high electrolyte concentration in the soil. The peat amendment, with a low-soluble C content, showed a similar respiration rate to the control soil, confirming that a source of soluble C is important for the initiation of rapid biological activity. Soil pH was significantly increased (by 0.6 of a pH unit) with addition of chicken manure, and still remained higher than control soil after 174 days of incubation. Lucerne was the only plant residue to increase soil pH, with the effect being sustained for 56 days. The study demonstrated how some organic amendments can improve chemical fertility and biological activity in high clay sodic subsoil, and at the same time contribute, after 25 weeks incubation, to an increase in carbon content.
Keywords:Sodic soil  Subsoil constraints  Organic amendment  C-mineralization  N-mineralization  Soil pH  CO2 emission  C-sequestration
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号