首页 | 本学科首页   官方微博 | 高级检索  
     检索      

毛竹快速生长期光合固碳特征及其与影响因素的关系
引用本文:李洪吉,蔡先锋,袁佳丽,曾莹莹,于晓鹏,温国胜.毛竹快速生长期光合固碳特征及其与影响因素的关系[J].浙江农林大学学报,2016,33(1):11-16.
作者姓名:李洪吉  蔡先锋  袁佳丽  曾莹莹  于晓鹏  温国胜
作者单位:1.浙江农林大学 林业与生物技术学院,浙江 临安 311300;2.浙江农林大学 亚热带森林培育国家重点实验室培育基地,浙江 临安 311300
基金项目:国家自然科学基金资助项目(31270497);浙江省与中国林业科学研究院省院合作林业科技项目(2014SY16)
摘    要:为了研究毛竹Phyllostachys edulis快速生长期光合固碳特征及其与主要生态因子的关系,利用Li?鄄6400光合仪测定不同年龄(Ⅰ度竹、Ⅱ度竹、Ⅲ度竹)的毛竹在其快速生长不同时期(前期、中期、后期)的光响应曲线及生态因子(光照强度、气温、大气相对湿度、大气二氧化碳摩尔分数、胞间二氧化碳摩尔分数、气孔导度)。结果表明:①毛竹在快速生长的不同时期、不同竹龄叶片的光合固碳能力的变化特征归纳为:快速生长前期是老竹高于新竹(Ⅱ度竹最高,Ⅲ度竹次之,Ⅰ度竹最低);而快速生长的中期和后期则为新竹高于老竹(Ⅰ度竹最高,Ⅱ度竹次之,Ⅲ度竹最低)。②在快速生长的不同时期,不同竹龄叶片的光合固碳能力的动态变化规律差异显著(P<0.05),新竹(Ⅰ度竹)的光合固碳能力在其快速生长期逐渐升高,而老竹(Ⅱ度竹和Ⅲ度竹)的光合固碳能力则都是中期最低,前期和后期较高,同时Ⅱ度竹均高于Ⅲ度竹。③毛竹在快速生长期,对毛竹叶片光合固碳能力的影响因子由大到小依次为:胞间二氧化碳摩尔分数>气孔导度>光照强度>大气二氧化碳摩尔分数>气温>大气相对湿度。经相关性分析得出,光照强度、气温、大气相对湿度、气孔导度与净光合速率(Pn)呈正相关,大气二氧化碳摩尔分数和胞间二氧化碳摩尔分数与净光合速率呈负相关。图3表1参18

关 键 词:植物生理学    毛竹    光响应曲线    影响因素    竹龄
收稿时间:2014-12-25

Photosynthetic carbon fixation in Phyllostachys edulis during its fast growth period
LI Hongji,CAI Xianfeng,YUAN Jiali,ZENG Yingying,YU Xiaopeng,WEN Guosheng.Photosynthetic carbon fixation in Phyllostachys edulis during its fast growth period[J].Journal of Zhejiang A&F University,2016,33(1):11-16.
Authors:LI Hongji  CAI Xianfeng  YUAN Jiali  ZENG Yingying  YU Xiaopeng  WEN Guosheng
Institution:1.School of Forestry and Biotechnology, Zhejiang A & F University, Lin’an 311300, Zhejiang, China;2.The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an 311300, Zhejiang, China
Abstract:To explain the relationship between the photosynthesis and the fast growth of Phyllostachys edulis, the photosynthetic carbon fixation characteristics of Ph. edulis during its fast growth period and relationships between the main ecological factors and net photosynthetic rate (Pn) were studied. Samples of different ages: Ⅰ(1-year old), Ⅱ(3-year old), and Ⅲ(5-year old); Ph. edulis were selected to determine the light response curve for different periods (prophase, metaphase, and anaphase) and to show the effect on Pn of factors such as light intensity (PAR), air temperature (Tair), relative humidity (HR), stomatal conductance (Cond), atmospheric CO2 concentration (Ca), and intercellular CO2 concentration (Ci) using an Li-6400 Portable Photosynthesis System. Results showed that: (1) in the prophase photosynthetic carbon fixation capacity of the older ages (ⅡandⅢ) was stronger than the younger age (Ⅰ) with Ⅱ being the strongest. However, in the metaphase and anaphase, the 1-year old was strongest (P<0.05). (2) Photosynthetic carbon fixation capacity for leaves in different developmental stages differed with younger plants (Ⅰ) rising gradually and older plants (ⅡandⅢ) being minimal in the metaphase and stronger in the prophase and anaphase. (3) During the fast growth period, leaf photosynthetic carbon fixation capacity influenced variables in the order: Ci > Cond >PAR > Ca > Tair > HR. A positive relationship was found for Pn versus PAR, Tair, HR, or Cond, and a negative relationship was found for Pn versus Ca or Ci. This study indicated that the photosynthetic carbon fixation capability was very strong in the fast growth period of Ph. edulis with older plants being able to store and provide energy for new shoots.[Ch, 3 fig. 1 tab. 18 ref.]
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《浙江农林大学学报》浏览原始摘要信息
点击此处可从《浙江农林大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号