首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of Lipid Source and Concentration on Somatic Growth of Juvenile Green Sea Urchins, Strongylocentrotus droebachiensis
Authors:Edward J  Kennedy Shawn M C  Robinson G Jay  Parsons John D  Castell
Institution:Fisheries and Oceans Canada, Biological Station, 531 Brandy Cove Road, St. Andrews, New Brunswick, Canada E5B 2L9; School of Fisheries, Marine Institute, Memorial University of Newfoundland, PO Box 4920, St. John's, Newfoundland, Canada A1C 5R3; Fisheries and Oceans Canada, Biological Station, 531 Brandy Cove Road, St. Andrews, New Brunswick, Canada E5B 2L9
Abstract:Supplying juvenile sea urchins with an abundant supply of resources and essential nutrients for growth will facilitate somatic growth and, hence, improve the success of the sea urchin aquaculture industry. Lipids are essential in physical processes such as membrane production and are a concentrated source of energy. This study, using prepared diets, tested the effects of lipid sources containing different major fatty acids (i.e., n‐3 and/or n‐6) (Part 1) and lipid concentration (i.e., 1, 3, 7, and 10%) (Part 2) on the somatic (i.e., test or shell) growth of two size cohorts (7.0‐ and 15.3‐mm average initial test diameter TD]) of juvenile green sea urchins, Strongylocentrotus droebachiensis. The growth of the sea urchins fed prepared diets was compared to the growth of sea urchins fed a kelp reference diet, Laminaria longicruris. After both feeding trials, the kelp‐fed sea urchins had superior test growth and were more similar in physical appearance to wild sea urchins (i.e., test color, spine length, and gonad color). The sea urchins fed the prepared diets had pale test color, short, stubby spines, and large, pale‐colored gonads compared to wild sea urchins. The smaller cohort of sea urchins grew at a faster rate, but growth patterns for both cohorts were similar. The juveniles fed the prepared diets (in both feeding trials) had high initial growth rates that decreased after approximately 100 d compared to the kelp‐fed juveniles. Differences in test growth were not shown to be affected by sea urchin size (i.e., similar results for both cohorts) or by differences in dietary lipid sources (i.e., the presence of n‐3 and/or n‐6 fatty acids). However, the sea urchins fed diets with lower lipid concentration (≤3%) had larger average TDs than those fed diets with higher lipid concentrations (≥7%). Differences in test growth and physical appearance among those fed the prepared diets and kelp may have been because of nutritional deficiencies in the prepared diets.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号