首页 | 本学科首页   官方微博 | 高级检索  
     检索      

大豆籽粒硬实加性和上位性QTL定位
引用本文:艾丽娟,陈强,杨春燕,闫龙,王凤敏,葛荣朝,张孟臣.大豆籽粒硬实加性和上位性QTL定位[J].作物学报,2018,44(6):852-858.
作者姓名:艾丽娟  陈强  杨春燕  闫龙  王凤敏  葛荣朝  张孟臣
作者单位:河北师范大学生命科学学院;河北省农林科学院粮油作物研究所/国家大豆改良中心石家庄分中心/农业部黄淮海大豆生物学与遗传育种重点实验室/河北省遗传育种重点实验室
基金项目:This study was supported by the National Key Research and Development Program of China(2016YFD0100201);the China Agriculture Research System(CARS-004-PS06);Key Research and Development Projects of Hebei Provence(16227516D)
摘    要:硬实是植物种子的普遍特性,是影响大豆种子发芽率、生存能力及储存期的重要数量性状,同时影响着大豆的加工品质。本实验通过对大豆籽粒硬实性状的加性和上位性互作QTL(quantitative trait locus)分析,明确控制大豆籽粒硬实的重要位点及效应,旨在为进一步解析硬实性状复杂的遗传机制提供理论依据。以冀豆12和地方品种黑豆(ZDD03651)杂交构建的包含186个家系的F_(6:8)和F_(6:9)重组自交系群体为材料,采用Win QTL Cartographer V.2.5的复合区间作图法(composite interval mapping,CIM)定位不同年份的籽粒硬实性状相关的加性QTL,同时采用Ici Mapping4.1软件中的完备区间作图法(inclusive composite interval mapping,ICIM)检测籽粒硬实性状的加性及上位性QTL。共检测到3个籽粒硬实性状相关的加性QTL,分别位于第2、第6和第14染色体,遗传贡献率范围为5.54%~12.94%。同时检测到4对上位性互作QTL,分别位于第2、第6、第9、第12和第14染色体,可解释的表型变异率为2.53%~3.47%。同时检测到籽粒硬实性状加性及上位性互作QTL,且上位性互作多发生在主效QTL间或主效QTL与非主效QTL间,表明上位性互作效应在大豆籽粒硬实性状的遗传基础中具有重要的作用。

收稿时间:2017-09-05

Mapping Main-effect and Epistatic QTL for Hard Seededness in Soybean
Li-Juan AI,Qiang CHEN,Chun-Yan YANG,Long YAN,Feng-Min WANG,Rong-Chao GE,Meng-Chen ZHANG.Mapping Main-effect and Epistatic QTL for Hard Seededness in Soybean[J].Acta Agronomica Sinica,2018,44(6):852-858.
Authors:Li-Juan AI  Qiang CHEN  Chun-Yan YANG  Long YAN  Feng-Min WANG  Rong-Chao GE  Meng-Chen ZHANG
Institution:1.College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei, China;2.Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences / Shijiazhuang Branch of National Soybean Improvement Center / Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture / Hebei Key Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035, Hebei, China
Abstract:Hardness is a common characteristic of plant seeds, which is an important quantitative trait affecting germination rate, viability and storage life, and also processing quality of soybean seeds. In this study QTL analysis of the additive and epistatic interaction was used to reveal the important loci and effects controlling soybean hard seededness, and to provide theoretical basis for further analysis of the complex genetic mechanism of hard seededness. F6:8 and F6:9 populations of 186 recombinant inbred lines (RIL) derived from a cross of Jidou 12 and native variety Heidou (ZDD03651) were used to determine the additive QTLs for hard seededness in different years by the composite interval mapping (CIM) method in WinQTL Cartographer V. 2.5 software. The inclusive complete interval mapping (ICIM) method in IciMapping 4.1 software was used for analysing the interaction of additive and epistatic QTLs for hard seededness. Three QTLs for hard seededness were identified on Chr. 02, Chr. 06, and Chr. 14, respectively, with the genetic contribution rate of 5.54%-12.94%. Four pairs of epistatic interaction QTLs were detected on Chr. 02, Chr. 06, Chr. 09, Chr. 12, and Chr. 14, respectively, with explained 2.53%-3.47% of the phenotypic variation. The QTLs of additive and epistatic interactions were also detected in the hard seeds of soybean, and the epistasis was performed between the main effect QTLs or between the main effect QTL and the non-main effect QTL. The results indecate that the epistatic interaction effect plays an important role in the genetic basis of hard seededness of soybean.
Keywords:soybean  hard seededness  QTL  epistasis  
本文献已被 CNKI 等数据库收录!
点击此处可从《作物学报》浏览原始摘要信息
点击此处可从《作物学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号