首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Proton transfer reaction mass spectrometry and time intensity perceptual measurement of flavor release from lipid emulsions using trained human subjects
Authors:Frank Damian  Appelqvist Ingrid  Piyasiri Udayasika  Wooster Tim J  Delahunty Conor
Institution:Food Futures Flagship, CSIRO Food and Nutritional Sciences, North Ryde, Australia. damian.frank@csiro.au
Abstract:The effect of the fat component of liquid emulsions on dynamic "in-nose" flavor release was examined using a panel of trained human subjects (n = 6), proton transfer reaction mass spectrometry (PTR-MS), and time intensity (TI) sensory evaluation. A rigorous breathing and consumption protocol was developed, which synchronized subjects' breathing cycles and also the timing of sample introduction. Temporal changes in volatile release were measured in exhaled nostril breath by real-time PTR-MS. Corresponding changes in the perceived odor intensity could also be simultaneously measured using a push button TI device. The method facilitated accurate examination of both "preswallow" and "postswallow" phases of volatile release and perception. Volatile flavor compounds spanning a range of octanol/water partition coefficient (K(o/w)) values (1-1380) were spiked into water (0% fat) or lipid emulsions with various fat contents (2, 5, 10, and 20% fat). Replicate samples for each fat level were consumed according to the consumption protocol by six subjects. Statistical comparisons were made at the individual level and across the group for the effects of changes in the food matrix, such as fat content, on both pre- and postswallow volatile release. Significant group differences in volatile release parameters including area under the concentration curve (AUC) and maximum concentration (I(max)) were measured according to the lipid content of emulsions and volatile K(o/w). In a second experiment, using single compounds (2-heptanone, ethyl butanoate, and ethyl hexanoate), significant decreases in both in-nose volatile release and corresponding perceived odor intensities were measured with increasing fat addition. Overall, the effect of fat on in vivo release conformed to theory; fat had little effect on compounds with low K(o/w) values, but increased for volatiles with higher lipophilicity. In addition, significant pre- and postswallow differences were observed in AUC and I(max), as a result of changing fat levels. In the absence of fat, more than half of the total amount of volatile was released in the preswallow phase. As the content of fat was increased in the emulsion systems, the ratio of volatile released postswallow increased compared to preswallow. These data may provide new insights into why low-fat and high-fat foods are perceived differently.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号