首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Biochemical markers for cabbage seedpod weevil (<Emphasis Type="Italic">Ceutorhynchus obstrictus</Emphasis> (Marsham)) resistance in canola (<Emphasis Type="Italic">Brassica napus</Emphasis> L.)
Authors:Eric J Shaw  Ron S Fletcher  Lloyd L Dosdall  Laima S Kott
Institution:(1) Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada;(2) Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
Abstract:In the last decade, the cabbage seedpod weevil (Ceutorhynchus obstrictus (Marsham)) has become a major insect pest of canola (Brassica napus L.) in Canada reducing seed yields up to 35%. Therefore, the benefits of developing weevil resistant germplasm to canola breeders and the industry would reduce input costs, pesticide use, environmental degradation and increase yield. Yellow mustard (Sinapis alba L.) is resistant to C. obstrictus (CSPW), although the exact mechanism is not known (McCaffrey et al. 1999). A unique canola population was generated at the University of Guelph from a cross between B. napus and S. alba through embryo rescue and backcrossed to canola several times prior to double haploid (DH) production. Approximately one-half of this DH population had canola quality glucosinolate concentration (<16 μmol/g) and was used for further breeding. The hypothesis was that some DH progeny from this cross inherited resistance to CSPW from S. alba. Weevil infestation levels were assessed for the B. napus × S. alba BC2 and BC3 DH populations in the field over 7 years in Alberta where weevil pressure is strong to establish the resistant or susceptible status of these lines. The basic objectives for this study were to confirm field resistance in the B. napus × S. alba germplasm in Ontario and to identify any biochemical markers associated with resistance/susceptibility. Canola doubled haploid lines derived from BC2 or BC3 families were field screened for resistance (R) followed by chemical analysis of glucosinolates to detect biochemical polymorphisms correlated with CSPW resistance using High Performance Liquid Chromatography (HPLC). Two polymorphic peaks were found, one each, from extracts of upper cauline leaves and Stage 3 pod seed, with retention times of ~23 and 19 min, respectively. These HPLC peaks consistently correlated with larval infestation data and the peak differences between R and S DH lines were significant. Therefore, these two peaks can be considered as biochemical markers in this breeding germplasm and may play a role in rapid and early detection of CSPW resistance.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号