首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mechanisms of resistance to diflubenzuron in the house fly, Musca domestica (L.)
Authors:Gajanan D Pimprikar  George P Georghiou
Institution:Division of Toxicology and Physiology, Department of Entomology, University of California, Riverside, California 92521 USA
Abstract:The mechanisms of resistance to the chitin synthesis inhibitor diflubenzuron were investigated in a diflubenzuron-selected strain of the house fly (Musca domestica L.) with > 1000 × resistance, and in an OMS-12-selected strain O-ethyl O-(2,4-dichlorophenyl)phosphoramidothioate] with 380 × resistance to diflubenzuron. In agreement with the accepted mode of action of diflubenzuron, chitin synthesis was reduced less in larvae of the resistant (R) than of a susceptible (S) strain. Cuticular penetration of diflubenzuron into larvae of the R strains was about half that of the S. Both piperonyl butoxide and sesamex synergized diflubenzuron markedly in the R strains, indicating that mixed-function oxidase enzymes play a major role in resistance. Limited synergism by DEF (S,S,S-tributyl phosphorotrithioate) and diethylmaleate indicated that esterases and glutathione-dependent transferases play a relatively small role in resistance. Larvae of the S and R strains exhibited a similar pattern of in vivo cleavage of 3H- and 14C-labeled diflubenzuron at N1C2 and N1C1 bonds. However, there were marked differences in the amounts of major metabolites produced: R larvae metabolized diflubenzuron at considerably higher rates, resulting in 18-fold lower accumulation of unmetabolized diflubenzuron by comparison with S larvae. Polar metabolites were excreted at a 2-fold higher rate by R larvae. The high levels of resistance to diflubenzuron in R-Diflubenzuron and R-OMS-12 larvae are due to the combined effect of reduced cuticular penetration, increased metabolism, and rapid excretion of the chemical.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号