首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of Nitrogen and Plant Density on Growth, Yield and Chemical Composition of Two Winter Wheat (Triticum aestivum L.) Cultivars
Authors:J Ellen
Institution:Department of Field Crops and Grassland Science, Wageningen Agricultural University, Wageningen, Netherlands
Abstract:A field study was conducted on the winter wheat cultivars Arminda and Okapi , using two seed rates (80 and 160 kg/ha) and three N applications (40, 80 and 120 kg/ha).
The cultivars did not differ in total dry matter production but did differ in grain yield. The difference in grain yield was mainly attributable to a higher harvest index (HI).
Increased plant density reduced HI; it resulted in more shoots per m2, but in a lower grain yield. The reduction in grain yield was caused by fewer kernels per ear and a lower 1000-grain weight in both cultivars.
A higher rate of N increased total dry matter production and grain yield, except in Okapi at the high plant density. The number of kernels per ear increased, but 1000-grain weight fell.
The higher the N applications, the higher the N-content of the roots was.
Total N yield was greater in Arminda than in Okapi. The cultivars differed in the amount of nitrogen they took up after anthesis.
The content of water-soluble carbohydrates (WSC) differed between the cultivars, N treatments and growth stages. Carbohydrate formed before anthesis accounted for 23 % of Arminda's grain yield and for 10 % of Okapi's grain yield.
The content of cell-wall constituents (CWC) depended on cultivar, growth stage and the rate of the N dressing. Differences in CWC were more pronounced in Arminda than in Okapi. During leaf, stem and ear development there was a strong increase in content and amount of CWC. Concomitantly, WSC decreased. This implies that a large consumption of WSC is necessary for the formation of CWC. The competition for the WSC, necessary for CWC and shoot and ear development influences kernel initiation. Per unit of dry matter Okapi contained more CWC than Arminda. This was not in agreement with differences in straw sturdiness.
Keywords:development  yield components  water-soluble carbohydrates  cell-wall constituents
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号