首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Regulation of some biochemical attributes in drought-stressed cauliflower (Brassica oleracea L.) by seed pre-treatment with ascorbic acid
Authors:M Latif  M Ashraf
Institution:1. Department of Botany, Government College University, Allama Iqbal Road, Faisalabad 38040, Pakistan;2. Pakistan Science Foundation, 1 Constitution Avenue, G-5/2, Islamabad 44000, Pakistan;3. Department of Botany and Microbiology, King Saud University, King Abdullah Road, Riyadh 11451, Saudi Arabia
Abstract:Cauliflower (Brassica oleracea L. var. botrytis) is widely used as a vegetable in many countries; however, productivity is adversely affected in areas affected by drought. To investigate the role of exogenously applied ascorbic acid (AsA) in mitigating the negative effects of drought on cauliflower, a pot experiment was performed using two cultivars of cauliflower ‘Local’ and ‘S-78’. Seeds of both cultivars were soaked in 75 mg l1, or in 150 mg l1 AsA, or in water (control) for 16 h. Water-deficit stress suppressed plant growth, reduced leaf chlorophyll concentrations, relative water contents (RWC), shoot and root P and K+ ion concentrations, and total soluble protein concentrations, significantly. However, significant drought-induced increases were observed in relative membrane permeability (RMP), the accumulation of total phenolic compounds, leaf free proline, glycinebetaine (GB), endogenous AsA, and hydrogen peroxide concentrations, and in the activity of superoxide dismutase (SOD). Seed treatment with 75 or 150 mg l1 AsA resulted in lower accumulations of H2O2, while increasing shoot and root fresh weights and dry weights, RWC, total phenolic compound, free proline, GB, and endogenous AsA concentrations, and the activities of SOD and catalase (CAT). No changes were observed in leaf chlorophyll concentrations or in peroxidase (POD) activities, RMP, shoot and root P and K+ ion accumulation, or in total soluble protein concentrations under water stress or non-stress conditions following seed treatment with AsA. ‘Local’ had higher proline concentrations and SOD activities; however, ‘S-78’ had higher RWC values, GB, and AsA concentrations. Overall, a pre-sowing treatment of cauliflower seed with 75 or 150 mg l1 AsA improved seedling tolerance to drought stress in both cultivars, which could be attributed to AsA-induced decreases in RMP and H2O2 concentrations, increases in the activities of CAT and SOD, increased RWC, and higher total phenolic compound, proline, GB, and AsA concentrations. The exogenous application of AsA therefore offers an effective strategy to minimise the adverse effects of drought stress on vegetable crops, including cauliflower.
Keywords:Brassica oleracea L    cauliflower  seed treatment  ascorbic acid  drought  superoxide dismutase
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号