首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Impact of sand burial on maize(Zea mays L.)productivity and soil quality in Horqin sandy cropland,Inner Mongolia,China
Authors:WANG Shaokun
Institution:1.Naiman Desertification Research Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;2. Laboratory of Stress Ecophysiology and Biotechnology, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
Abstract:Croplands are often suffering from sand burial in dry regions of northern China.For studying this phenomenon,we carried out a case study of field experiment including four sand burial levels,i.e.shallow(1–3 cm),moderate(8–12 cm)and deep(15–20 cm)sand burials,and no sand burial(control,CK),in a typical agro-pastoral transitional zone in Naiman Banner of eastern Inner Mongolia.The aim of this study was to assess the impacts of sand burial on maize(Zea mays L.)productivity and the soil quality along a gradient of burial depths.Results showed that there was a strong negative effect of sand burial on maize productivity and soil quality,which significantly declined(P<0.05)under moderate and deep sand burial treatments.In comparison with the CK,the maize yield and above-ground biomass reduced by 47.41% and 39.47%,respectively.The soil silt and clay,soil water,soil organic carbon and total nitrogen contents under deep sand burial decreased by 67.85%,40.32%,86.52% and 82.11%,respectively,while microbial biomass carbon,microbial abundance and enzyme activity decreased by 89.78%,42.28%–79.66% and 69.51%–97.71%,respectively.There was no significant effect on crop productivity and soil quality with shallow sand burial treatment.The correlations analysis showed that there was significant positive correlations of both maize yield and above-ground biomass with soil silt and clay,soil organic carbon and total nitrogen contents,p H,electrical conductivity,soil water content,microbial abundance and biomass and all tested soil enzyme activities.Stepwise regression analysis indicated that soil water and total nitrogen contents,urease,cellobiohydrolase and peroxidase activities were key determining factors for maize productivity.This combination of factors explains reason of the decreased maize productivity with deep sand burial.We found that degradation of cropland as a result of sand burial changed soil physical-chemical properties and soil enzyme activities in the plow layer,and decreased overall maize productivity.Furthermore,decreased soil enzyme activity was a better indicator to predict sandy cropland degradation.
Keywords:stable isotopes  d-excess  lake level  E/I ratio  isotopic enrichment model  paleoclimate  
本文献已被 CNKI 等数据库收录!
点击此处可从《干旱区科学》浏览原始摘要信息
点击此处可从《干旱区科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号