首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dependence of the aboveground respiration of hinoki cypress (Chamaecyparis obtusa) on tree size
Authors:Yokota T  Ogawa K  Hagihara A
Institution:Laboratory of Forest Ecology and Physiology, School of Agricultural Sciences, Nagoya University, Nagoya 464-01, Japan.
Abstract:Nighttime respiration was measured at monthly intervals over one year on the aboveground parts of five sample trees in an 8-year-old hinoki cypress (Chamaecyparis obtusa (Sieb. et Zucc.) Endl.) stand, by an enclosed standing-tree method. The respiration rate rose rapidly from early spring to a maximum in June, and decreased abruptly in July and then gradually toward autumn and winter. The seasonal change in the respiration rate was synchronized with stem volume increment rather than with monthly mean air temperature. The respiration rate, r, of individual trees increased with increasing tree dimensions, such as stem volume, v(S), and stem girth at the base of the live crown, G(B). The dependence of respiration rate on tree size was successfully represented by a power function. The r - v(S) dependence was rather stronger than the r - G(B) (2) dependence, especially toward the end of the growing season (from July to September). The observed respiration rate was almost the same as the respiration rate corrected for the monthly mean air temperature. The annual respiration of individual trees was directly proportional to their phytomass or to its increment. Although the annual respiration of individual trees decreased proportionally to the square root of the leaf mass, it decreased abruptly in the range close to the smallest sample tree. Combining the monthly relationship between respiration rate and stem volume with the tree size distribution in the stand, the stand aboveground annual respiration was estimated to be 20.4 Mg CO(2) ha(-1) year(-1) (= 12.5 Mg dry mass ha(-1) year(-1)) for an aboveground biomass of 17.4 Mg ha(-1) with an annual increment of 6.51 Mg ha(-1) year(-1), i.e., the stand aboveground annual respiration amounted to the equivalent of 72% of the biomass or to almost twice the biomass increment.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号