首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Studies on the effect of ball milling on lignin structure using a modified DFRC method.
Authors:Tsutomu Ikeda  Kevin Holtman  John F Kadla  Hou-min Chang  Hasan Jameel
Institution:Department of Wood and Paper Science, College of Natural Resources, North Carolina State University, Raleigh, NC 27695-8005, USA.
Abstract:The structures of milled wood lignin (MWL), cellulolytic enzyme lignin (CEL), and residual lignin (REL) from a loblolly pine were analyzed using a modified derivatization followed by reductive cleavage (DFRC) method developed to allow the quantitative determination of three different structural monomeric products originating in lignin: phenolic beta-O-4, alpha-O-4, and etherified beta-O-4 structures. Results show that MWL and CEL are structurally identical, with an increased phenolic beta-O-4 content compared to that of the original Wiley milled wood. These results indicate that the portion of lignin linked to carbohydrates and that not linked to carbohydrates are structurally the same. Modified DFRC analysis of the effect of ball milling on the structure of lignin in wood, MWL, CEL, and REL indicate that vibratory ball milling does not change the lignin structure provided certain precautions are taken. Specifically, dry vibratory ball milling under a nitrogen atmosphere causes substantial structural changes including condensation, whereas vibratory ball milling in toluene had little effect on the lignin structure. This indicates that the structural differences observed in MWL and CEL arise because of the extraction procedure, which preferentially extracts phenolic lignin structures. MWL and CEL are representative of the total lignin in wood; however, due primarily to the solvent extraction process, higher phenolic hydroxyl contents are observed. Nitrobenzene oxidation showed structural results similar to those from the modified DFRC method.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号