首页 | 本学科首页   官方微博 | 高级检索  
     检索      

外源NO对混合盐碱胁迫下藜麦种子萌发和幼苗生长的影响
引用本文:赵颖,魏小红,李桃桃.外源NO对混合盐碱胁迫下藜麦种子萌发和幼苗生长的影响[J].草业学报,2020,29(4):92-101.
作者姓名:赵颖  魏小红  李桃桃
作者单位:甘肃农业大学生命科学技术学院,甘肃 兰州 730070
基金项目:国家自然基金项目(31560663)资助
摘    要:通过将中性盐(NaCl、Na2SO4)和碱性盐(NaHCO3、Na2CO3)按碱性盐比例增加方式模拟出 5种混合盐碱胁迫(pH 7.33~10.39),采用50、100、150、200 μmol·L-1硝普钠(SNP)为外源NO供体对藜麦种子进行处理,分析外源NO对混合盐碱胁迫下藜麦种子萌发、幼苗生长及生理特性的影响。结果表明:盐碱胁迫显著抑制藜麦种子的萌发及幼苗的生长发育,且当混合盐碱溶液pH>9时,藜麦种子在萌发的第7天开始腐烂。各浓度SNP均显著促进混合盐碱胁迫下藜麦种子萌发和幼苗生长,其中100和150 μmol·L-1 SNP处理效果最佳。A(NaCl∶Na2SO4=1∶1)、B(NaCl∶Na2SO4∶NaHCO3=1∶2∶1)胁迫下施加SNP,藜麦幼苗根长最大增加了74.08%和70.77%,生物量最高增加了1.72和3.97倍。C(NaCl∶Na2SO4∶NaHCO3∶Na2CO3=1∶9∶9: 1)、D(NaCl∶Na2SO4∶NaHCO3∶Na2CO3=1∶1∶1∶1)、E(NaCl∶Na2SO4∶NaHCO3∶Na2CO3=9∶1∶1∶9)胁迫下施加SNP阻止种子的腐烂,根长分别是CK的1.03、0.83和0.60倍,生物量分别是CK的1.13、1.13和0.82倍。随SNP浓度增加,盐碱胁迫下幼苗脯氨酸含量及SOD、POD、CAT、APX活性先增加后降低,MDA含量先降低后增加。以上结果说明SNP对藜麦萌发生长的调控具有浓度效应,可通过增加渗透调节和抗氧化酶活性来缓解细胞损伤,从而促进幼苗生长。本研究为SNP提高藜麦耐盐碱性和揭示其调控机制提供理论依据。

关 键 词:外源一氧化氮  混合盐碱  藜麦  萌发期  抗氧化酶  
收稿时间:2019-07-08
修稿时间:2019-08-09

Effects of exogenous nitric oxide on seed germination and seedling growth of Chenopodium quinoa under complex saline-alkali stress
ZHAO Ying,WEI Xiao-hong,LI Tao-tao.Effects of exogenous nitric oxide on seed germination and seedling growth of Chenopodium quinoa under complex saline-alkali stress[J].Acta Prataculturae Sinica,2020,29(4):92-101.
Authors:ZHAO Ying  WEI Xiao-hong  LI Tao-tao
Institution:College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
Abstract:Neutral salts (NaCl and Na2SO4) and alkaline salts (NaHCO3 and Na2CO3) were used to generate five pH values of complex saline-alkali solutions (7.33-10.39) by varying the proportion of alkaline salts. Sodium nitroprusside (SNP) concentrations of 50, 100, 150, 200 μmol·L-1 were used as an exogenous nitric oxide donor to treat Chenopodium quinoa seed. The seed germination and seedling growth, as well as physiological characteristics of C. quinoa under the range complex saline-alkali stress conditions were analyzed. It was found that seed germination and seedling growth of quinoa were significantly inhibited by complex saline-alkali stress, and the seedlings rotted when the pH values were greater than 9.0. After pretreatment with different concentrations of SNP, the germination and growth were significantly improved, 100 and 150 μmol·L-1 SNP gave the best results. Compared with saline-alkali treatment alone, the maximum the root length was increased by 74.08% and 70.77%, the maximum fresh biomass was increased by 1.72 and 3.97 times, respectively, under A (NaCl∶Na2SO4=1∶1) and B (NaCl∶Na2SO4∶NaHCO3=1∶2∶1) treatments. Supplementation with SNP under C (NaCl∶Na2SO4∶NaHCO3∶Na2CO3=1∶9∶9∶1), D (NaCl∶Na2SO4∶NaHCO3∶Na2CO3=1∶1∶1∶1), E (NaCl∶Na2SO4∶NaHCO3∶Na2CO3=9∶1∶1∶9) treatments prevent some seed decay, and root length was, respectively, 1.03, 0.83, and 0.60 times that of CK, while fresh biomass was, respectively, 1.13, 1.13, 0.82 times that of CK. With increase in the SNP concentration, proline content and activities of superoxide dismutase, peroxidase, catalase and ascorbate peroxidase initially increased and then decreased, while MDA content initially decreased and then increased. In conclusion, SNP promoted quinoa germination and growth under saline-alkali stress, and there was a clear concentration-dependent relationship. Key components of the response were increased osmotic adjustment and antioxidant enzyme activities, thus alleviating cellular injury, with resultant promotion of the seedling growth, and enhancement of the saline-alkali resistance of quinoa.
Keywords:exogenous nitric oxide  saline-alkali stress  Chenopodium quinoa  germination stage  anti-oxidative enzymes  
点击此处可从《草业学报》浏览原始摘要信息
点击此处可从《草业学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号