首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The effect of sward structure as influenced by ryegrass genotype on bite dimensions and short-term intake rate by dairy cows
Authors:P D Barrett  D A McGilloway  A S Laidlaw†  C S Mayne‡
Institution:Agricultural Research Institute of Northern Ireland, Queen's University of Belfast, ARINI, Large Park, Hillsborough, Co. Down, UK,;Department of Applied Plant Science, Queens University of Belfast, and Applied Plant Science Division, Department of Agriculture and Rural Development, Plant Testing Station, Crossnacreevy, Belfast, UK, and;Department of Agricultural and Environmental Science, Queen's University of Belfast, ARINI, Large Park, Hillsborough, Co. Down, UK
Abstract:Abstract The effects of genotypic variation in ryegrasses on sward structure, bite dimensions and intake rate by dairy cows were investigated. Two experiments were conducted. In Experiment 1, swards were in a vegetative state whereas, in Experiment 2, they were partly reproductive and were taller with higher herbage mass but lower leaf proportion than in Experiment 1. Applicability of relationships between sward structure and bite characteristics, previously established from artificial or hand‐constructed swards, to field conditions were tested. Additional short‐term intake rates and/or sward structural characteristics were considered as indicators of potential intake for use in protocols for the evaluation of grass varieties. Four cultivars were studied: AberElan, Twins (diploid and tetraploid perennial ryegrasses respectively), Polly, a hybrid ryegrass (perennial × Italian ryegrass) and Multimo (Italian ryegrass), each established in 200‐m2 plots in four replicated blocks. Herbage intake rate was determined by short‐term liveweight change (taking account of insensible weight loss) using 16 dairy cows allocated to four balanced groups with each plot grazed by one group for a 1‐h assessment period. One block was grazed per day, over a 4‐d experimental period, with each group grazing each variety in a complete crossover design. Sward characteristics and bite rate were also measured in both experiments. Bite dimensions were subsequently estimated, with bite depth being determined as a function of extended tiller height (ETH) in both experiments. Within both experiments, bite mass and intake rate did not differ significantly between swards of different cultivars despite swards containing Multimo generally having a higher ETH and water‐soluble carbohydrate concentration and lower green leaf mass, sward bulk density and neutral‐detergent fibre concentration than the other swards. However, bite depth was significantly higher (P < 0·01) in swards containing Multimo swards than in the others and, in Experiment 1, bite depth, as a proportion of ETH, was higher in swards containing Multimo and lower in those containing Twins than in the other two cultivars, whereas there was no difference in Experiment 2. Taking both experiments together, the mean bite depth was 0·5 of ETH with sward bulk density accounting for almost half the variance in the relationship between bite depth and ETH. The bulk density of the bite (bite mass per unit bite volume), measured in Experiment 2, followed a similar pattern to sward bulk density, increasing in the order Multimo, Polly, AberElan and Twins. It is concluded that the relationships between sward characteristics and bite dimensions, derived from artificial swards, are applicable to field swards, although the range in natural ryegrass sward characteristics is usually not as wide as in experiments using artificial swards. Lack of precision in the measurement of short‐term intake and in sward‐based measurements is likely to preclude their use in the evaluation of grass varieties.
Keywords:Lolium spp    bite mass  leaf content  sward bulk density  extended tiller height
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号