首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fractionation of copper and uranium in organic and conventional vineyard soils and adjacent stream sediments studied by sequential extraction
Authors:Zacharias Steinmetz  Kilian G J Kenngott  Mohamed Azeroual  Ralf B Schäfer  Gabriele E Schaumann
Institution:1.Institute for Environmental Sciences, Group of Environmental and Soil Chemistry,University of Koblenz-Landau,Landau,Germany;2.Institute for Environmental Sciences, Group of Quantitative Landscape Ecology,University of Koblenz-Landau,Landau,Germany
Abstract:

Purpose

Particularly in organic viticulture, copper compounds are intentionally released into the environment as fungicide, whereas uranium originates from conventional phosphate fertilization. Both activities contribute to the metal contamination in wine-growing areas. This pilot study aimed to better understand how soil properties influence the presence and environmental fate of copper and uranium with respect to viticultural management.

Materials and methods

We characterized metal binding forms, i.e., their association with different soil constituents, in organically and conventionally cultivated vineyard soils and adjacent upstream and downstream sediments. The available metal fraction and the fractions associated with manganese oxides, organic matter, iron oxides, and total contents were extracted sequentially.

Results and discussion

Total soil copper ranged from 200 to 1600 mg kg?1 with higher contents in topsoil than subsoil. The majority of copper (42–82%) was bound to soil organic matter. In all fractions, copper contents were up to 2-fold higher in organic than in conventional vineyards, whereas the sediment concentrations were independent of the adjacent viticultural management. A net increase of copper in downstream sediments was found only when water-extractable organic carbon (WEOC) in an adjacent vineyard was elevated. With 11 ± 1 mg kg?1, total uranium was 25% higher in conventional than in organic vineyard soils. Its affinity to iron or WEOC potentially rendered uranium mobile leading to a substantial discharge to downstream sediments.

Conclusions

Translocation of copper and uranium from vineyards into adjacent stream sediments may rather be attributed to WEOC and iron contents than the viticultural management. Follow-up studies should scrutinize the processes driving metal availability and transport as well as their interaction at the aquatic–terrestrial interface.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号