首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Verrucomicrobial elevational distribution was strongly influenced by soil pH and carbon/nitrogen ratio
Authors:Congcong Shen  Yuan Ge  Teng Yang  Haiyan Chu
Institution:1.State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science, Chinese Academy of Sciences,Nanjing,China;2.State Key Laboratory of Urban and Regional Ecology,Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,Beijing,China;3.University of the Chinese Academy of Sciences,Beijing,China
Abstract:

Purpose

The bacterial phylum Verrucomicrobia plays important roles in biogeochemical cycling processes, while the ecology of this phylum is still unclear. Previous elevational studies mainly focused on whole bacterial communities, while no study exclusively picked out Verrucomicrobia. Our objectives were to investigate the abundance, diversity and community composition of soil Verrucomicrobia across an elevation gradient on Changbai Mountain.

Materials and methods

In total, 24 soil samples representing six elevation gradients were collected. Primer set 515F/806R was used for PCR amplifications and sequencing was conducted on an Illumina HiSeq2000 platform. Data sets comprising of Verrucomicrobial phylum were culled from all quality sequences for the further analyses of Verrucomicrobial diversity and community composition.

Results and discussion

The relative abundance of Verrucomicrobia accounted for ~20% of the total bacterial communities, and Spartobacteria and DA101 were the most dominant class and genus, respectively. Verrucomicrobia community composition differed significantly among elevations, while the Verrucomicrobia diversity showed no apparent trend along elevation although the richness of some classes or genera significantly changed with elevation. The Verrucomicrobial community composition, diversity, and relative abundance of specific classes or genera were significantly correlated with soil pH and carbon/nitrogen ratio (C:N ratio).

Conclusions

These results indicated that Verrucomicrobia were abundant in Changbai Mountain soils, and Verrucomicrobial elevational distribution was strongly influenced by soil pH and C:N ratio. Our results also provide potential evidence that the dominant genus DA101 occupies different ecological niches and performs oligotrophic life history strategy in soil environment.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号