首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Heavy metal content and toxicity of mine and quarry soils
Authors:Manoel Lago-Vila  Andrés Rodríguez-Seijo  Daniel Arenas-Lago  Luisa Andrade  Maria Flora Alonso Vega
Institution:1.Department of Plant and Soil Science,Universidad de Vigo, As Lagoas,Marcosende,Spain
Abstract:

Purpose

Soils formed in metallic mines and serpentinite quarries, among other unfavourable features, have high levels of heavy metals. They can release into the environment causing surface and subsurface water contamination, uptake by plants, their accumulation in the food chain and adverse effects on living organisms. In this work, we studied the magnitude of the soils’ toxic effects not only on spontaneous plants but also on two species with phytoremediation potential.

Materials and methods

Several soils from two different exploitations were selected: a lead and zinc mine and a serpentinite quarry. Soils were characterized, and the pseudo-total and extractable contents of Co, Cr and Ni in soils from a serpentinite quarry were determined. The Cd, Pb and Zn pseudo-total and extractable contents were determined in soils developed in the Pb/Zn abandoned mine. Using a biotest, the chronic toxicity of the soil samples on higher plants was determined. Festuca ovina L., Cytisus scoparius (L.) Link., Sinapis alba L. and Brassica juncea L. were selected, the first two because they are spontaneous plants in the study areas and the last two because they have heavy metal phytoremediation potential.

Results and discussion

Pseudo-total contents of Co, Cr and Ni in the serpentinite quarry soils and of Zn, Pb and Cd in the Zn/Pb mine soils exceed generic reference levels. CaCl2 is the reactant that extracts the highest proportion of Co, Cr and Ni in the quarry soils and EDTA the largest proportion of Pb Zn and Cd content in the mine soils. The germination index values based on seed germination and root elongation bioassays revealed increasing plant sensitivity to the mine soils in the following order: B. juncea?<?S. alba?<?F. ovina?<?C. scoparius. The wide range of GI values indicates that the response of test plants to soil heavy metals depended on their concentrations and soil characteristics, especially pH and organic matter content.

Conclusions

The pollution index indicates severe Cd, Pb and Zn contamination in the mine soils, as well as high Cr and Ni and moderate Co contamination in the serpentinite quarry soils. The performed biotests were suitable for identifying toxic soils and showed that the studied soils are toxic to the spontaneous plants, more to C. scoparius than to F. ovina. They also indicate that the mine soils are more toxic than the quarry soils for both species.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号