首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Carbon sequestration by a crop over a 4-year sugar beet/winter wheat/seed potato/winter wheat rotation cycle
Authors:M Aubinet  C Moureaux  B Bodson  D Dufranne  B Heinesch  M Suleau  F Vancutsem  A Vilret
Institution:1. Unité de Physique des Biosystèmes, Faculté universitaire des Sciences agronomiques de Gembloux, BE-5030 Gembloux, Belgium;2. Unité de Phytotechnie des Régions tempérées, Faculté universitaire des Sciences agronomiques de Gembloux, Belgium
Abstract:A crop managed in a traditional way was monitored over a complete sugar beet/winter wheat/potato/winter wheat rotation cycle from 2004 to 2008. Eddy covariance, automatic and manual soil chamber, leaf diffusion and biomass measurements were performed continuously in order to obtain the daily and seasonal Net Ecosystem Exchange (NEE), Gross Primary Productivity (GPP), Total Ecosystem Respiration (TER), Net Primary Productivity (NPP), autotrophic respiration, heterotrophic respiration and Net Biome Production (NBP). The results showed that GPP and TER were subjected to important inter-annual variability due to differences between crops and to climate variability. A significant impact of intercrop assimilation and of some farmer interventions was also detected and quantified. Notably, the impact of ploughing was found to be limited in intensity (1–2 μmol m?2 s?1) and duration (not more than 1 day). Seasonal budgets showed that, during cropping periods, the TER/GPP ratio varied between 40 and 60% and that TER was dominated mainly by the autotrophic component (65% of TER and more). Autotrophic respiration was closely related to GPP during the growth period. The whole cycle budget showed that NEE was negative and the rotation behaved as a sink of 1.59 kgC m?2 over the 4-year rotation. However, if exports are deducted from the budget, the crop became a small source of 0.22 (±0.14) kgC m?2. The main causes of uncertainty with these results were due to biomass samplings and eddy covariance measurements (mainly, uncertainties about the u* threshold determination). The positive NBP also suggested that the crop soil carbon content decreased. This could be explained by the crop management, as neither farmyard manure nor slurry had been applied to the crop for more than 10 years and because cereal straw had been systematically exported for livestock. The results were also strongly influenced by the particular climatic conditions in 2007 (mild winter, and dry spring) that increased the fraction of biomass returned to the soil at the expense of harvested biomass, and therefore mitigated the source intensity. If 2007 had been a ‘normal’ year, this intensity would have been twice as great. This suggests that, in general, the rotation behaved as a small carbon source, which accords with similar studies based on multi-year eddy covariance measurements and export assessment and with modelling or inventory studies analysing the evolution of crop soil organic carbon (SOC) on a decennial scale.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号