首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Comparative Studies on the Role of Organic Biostimulant in Resistant and Susceptible Cultivars of Rice Grown under Saline Stress - Organic Biostimulant Alleviate Saline Stress in Tolerant and Susceptible Cultivars of Rice
Authors:Mohd Shahanbaj Khan  Manish K Pandey  S Hemalatha
Institution:1.School of Life Sciences,B. S. Abdur Rahman Crescent Institute of Science and Technology,Vandalur, Chennai,India;2.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT),Patancheru,India
Abstract:Plants are sessile organisms that experience various abiotic stresses during their lifespan and try to adapt to these environmental stresses by manipulating their physiological, biochemical, cellular, and molecular mechanisms. Salinity is one of the important abiotic stress that affects the metabolism and physiology of plant cells that leads to serious damage to crops and productivity. We investigated the response of two contrasting (salt susceptible and tolerant) cultivars during saline stress by modulating its effect with the application of an important natural biostimulant panchagavya (PG). The results showed that the salinity stress greatly influenced and negatively affects the plant growth, biochemical attributes, and induces the expression of various genes in both cultivars. Furthermore, we assessed the effect of PG alone and by amending with NaCl to alleviate the saline stress which showed a significant enhancement of biochemical and physiological characteristics in both cultivars. Furthermore, we assessed the response of seven autophagy associated gene (ATG1, ATG3, ATG4, ATG6, ATG7, ATG8, and ATG9), BAX Inhibitor -1 (BI-1), Mitogen activated Protein Kinase–1 (MAPK-1), WRKY53, Catalase -1 (CAT-1), Superoxide Dismutase (SOD), and Glutathione Peroxidase (GPX) genes in rice that displayed the differential expression pattern during saline stress in both cultivars. We concluded that saline stress can be manipulated by the application of PG and positively regulate the physiological, biochemical, and gene expression response in salt-susceptible and -tolerant rice cultivars. Furthermore, the current study also suggested that salinity is a mutifactorial and multigenic response. Autophagy and programmed cell death regulated along with salinity and was helpful in adapting the tolerance against the stress condition.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号