首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Resynthesis of Brassica napus L. for self-incompatibility: self-incompatibility reaction, inheritance and breeding potential
Authors:M H Rahman
Institution:Danisco Seed, DK-4960 Holeby, Denmark
Abstract:Self-incompatibility (SI) in Brassica has been considered as a pollination control mechanism for commercial hybrid seed production, and so far has been extensively used in vegetable types of Brassicas. Oilseed rape Brassica napus (AACC) is naturally self-compatible in contrast to its parental species that are generally self-incompatible. Introduction of S-alleles from its parental species into oilseed rape is therefore needed to use this pollination control mechanism in commercial hybrid seed production. Self-incompatible lines of B. napus , carrying SI alleles in both A and C genomes, were resynthesized from self-incompatible B. oleracea var. italica (CC) cv.'Green Duke' and self-incompatible B. rapa ssp. oleifera (AA) cv. 'Horizon', 'Colt' and 'AC Parkland'. All resynthesized B. napus lines exhibited strong dominant SI phenotype. Reciprocal cross-compatibility was found between some of these self-incompatible lines. The inheritance of S-alleles in these resynthesized B. napus was digenic confirming that each of the parental genomes contributed one S-locus in the resynthesized B. napus lines. However, the presence of two S-loci in the two genomes was found not to be essential for imparting a strong SI phenotype. Possible use of these dominant self-incompatible resynthesized B. napus lines in hybrid breeding is discussed.
Keywords:Brassica napus            breeding  dominant self-incompatibility  inheritance  resynthesis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号