首页 | 本学科首页   官方微博 | 高级检索  
     检索      

刀鲚类Tc1转座子的分子特征及拷贝数变化的意义
引用本文:刘东,李盈盈,唐文乔,杨金权,郭弘艺.刀鲚类Tc1转座子的分子特征及拷贝数变化的意义[J].水产学报,2016,40(2):156-163.
作者姓名:刘东  李盈盈  唐文乔  杨金权  郭弘艺
作者单位:上海海洋大学鱼类研究室,上海市海洋动物系统分类与进化重点实验室,上海201306
基金项目:高等学校博士学科点专项科研基金;国家自然科学基金;其它
摘    要:为了探讨刀鲚2种不同生活史种群的遗传结构差异以及成因,本研究利用分子克隆及转座子展示技术,从刀鲚基因组中分离、鉴定出一类新的、命名为Cn-Tc1的转座子。该转座子全长1896 bp,为鳀科鱼类第一类被挖掘的Tc1转座子。Cn-Tc1自身包含另一个长度为1040 bp的类Tc1,表明Cn-Tc1在基因组内的转座经历过多次迸发。Cn-Tc1的5’和3’末端反向重复序列长度分别为64和83 bp,转座插入位点具有"TATA"基序。预测的Cn-Tc1转座酶具有与DNA结合的保守结构,提示其仍具有转座潜能。Cn-Tc1插入位点侧翼序列的GC含量呈不均匀分布,均值低于AT含量。运用荧光定量PCR方法,估算了靖江、象山、洞庭湖、鄱阳湖、太湖以及崇明等水域刀鲚种群基因组中Cn-Tc1拷贝数,分别为3.140×103、2.992×103、6.876×103、5.205×103、5.531×103和3.046×103个。单因素方差分析发现,象山、崇明、靖江种群间的拷贝数差异性不显著,而与其他种群的差异性均显著;鄱阳湖、太湖和洞庭湖种群之间差异性亦不显著,但与其他种群均呈显著性差异。研究结果表明,Cn-Tc1促进了遗传结构的改变,为刀鲚种群的适应性进化提供了自然选择的基础。

关 键 词:刀鲚  转座子  类Tc1  拷贝数  种群
收稿时间:2015/4/24 0:00:00
修稿时间:2015/7/20 0:00:00

Molecular characters of Tc1-like transposon isolated from Coilia nasus and implication of the copy number variation
LIU Dong,LI Yingying,TANG Wenqiao,YANG Jinquan and GUO Hongyi.Molecular characters of Tc1-like transposon isolated from Coilia nasus and implication of the copy number variation[J].Journal of Fisheries of China,2016,40(2):156-163.
Authors:LIU Dong  LI Yingying  TANG Wenqiao  YANG Jinquan and GUO Hongyi
Institution:Laboratory of Fishes, Shanghai Ocean University,,Laboratory of Ichthyology,Shanghai Ocean University,,
Abstract:Coilia nasus occurs as two different ecotypes in Yangtze River. To investigate the cause of the difference between population structures, we performed molecular clone and transposon displaying technology to obtain a novel Tc1-like transposon, named Cn-Tc1, from C. nasus. Cn-Tc1 with full length of 1 896 bp is the first Tc1-like transposon reported in Engraulidae fishes. Cn-Tc1 itself harbored an insertion of Tc1-like transposon of 1040 bp, suggesting that burst of Cn-Tc1 occurred in genome for several times. The lengths of inverted terminal repeats at the 5'and 3'ends of Cn-Tc1 were 64 and 83 bp, respectively. The sites at the insertions have a "TATA" motif. The predicted transposase showed a conserved DNA-binding structure, indicating that maybe Cn-Tc1 has potential for transposition. GC contents of the flanking sequence are higher than that of AT, showing an uneven distribution. A real-time PCR method was used to calculate the copy numbers of Cn-Tc1 in different populations including Jingjiang (JJ) in Jiangsu province, Xiangshan (XS) in Zhejiang province, Dongting Lake (DT), Poyang Lake (PY), Taihu Lake (TH), and Chongming (CM) in Shanghai. The copy numbers per haploid genome are 3.140×103, 2.992×103, 6.876×103, 5.205×103, 5.531×103, 3.046×103, respectively. With One-Way ANOVA analysis, there is no difference among XS, CM and JJ. When the three populations incorporated into one group of the migration, the difference among the group and other populations is significant. There is no difference among PY, TH and DT, but when incorporated into one group of the residence, the difference between the residence and the migration is significant. Our results indicated that the mutation of genetic structure caused via Cn-Tc1 facilitated the adaptive evolution of C. nasus populations by natural selection of genetic mutation.
Keywords:Coilia nasus  transposon  Tc1  copy number  population
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《水产学报》浏览原始摘要信息
点击此处可从《水产学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号