首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The carbon storage in moso bamboo plantation and its spatial variation in Anji County of southeastern China
Authors:Weijun Fu  Peikun Jiang  Keli Zhao  Guomo Zhou  Yongfu Li  Jiasen Wu  Huaqiang Du
Institution:1. Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, Zhejiang A&F University, Lin’an, Zhejiang Province, 311300, China
2. School of Environmental and Resource Sciences, Zhejiang A&F University, Lin’an, Zhejiang Province, 311300, China
Abstract:

Purpose

Forest ecosystems play an important role in sequestering carbon in their biomass and soils. Moso bamboo plantations, as a special forest type, are mainly distributed in southern China. There is little information about the carbon storage in moso bamboo plantations, it is now important to better understand the moso bamboo’s carbon sequestration. The main objectives of this study were to investigate the spatial variation of aboveground biomass carbon (AGC) and soil organic carbon (SOC) in moso bamboo plantations and to compare carbon storage in moso bamboo plantations under different management options.

Materials and methods

A total of 73 moso bamboo plots were selected in Anji County, which is a famous “bamboo town” in northwest Zhejiang province, China. The diameter at breast height and the age of each moso bamboo in the selected plots were measured in order to calculate the AGC. SOC was analyzed using sulfuric acid–potassium dichromate solution. One-way ANOVA was applied to analyze the significant difference of AGC and SOC under different management options. Geostatistics and geographical information were used to study the spatial dependence characteristics of AGC and SOC.

Results and discussion

The AGC values were very variable, ranging from 9.92 to 38.70 Mg?ha?1, with an average of 20.85 Mg?ha?1. The SOC values were from 34.8 to 176.17 Mg?ha?1. Both the AGC and SOC values were followed normal distributions. Moso bamboo plantations contributed about 16.5 % of total forest biomass carbon in Zhejiang Province, indicating its important influence on regional carbon budget. Geostatistical analysis revealed that the AGC had moderate spatial autocorrelation. A nested model (a spherical model with a Gaussian model) was chosen to describe the variogram. Spatial patterns for AGC were found in Anji County, with relatively high AGC values were found in the southwestern part of Anji County, and low values were located in the eastern and central parts of the county. While no clear spatial autocorrelation trend was observed in the semivariogram of SOC, indicating a random distribution pattern for SOC in the study area. Meanwhile, the Pearson’s correlation between AGC and SOC in bamboo plantation was weak (r?=?0.064, p?=?0.496), due to moso bamboo’s special growth process and different management options by human beings.

Conclusions

In this study, moderate spatial dependency was found for AGC, while the spatial autocorrelation of SOC was poor. In moso bamboo forest ecosystem, SOC was mainly stored at the top 40 cm layer. Management options were proved to be an important factor for carbon sequestration. Extensive management is an efficient way to increase carbon stock, compared to moderate and intensive management. With the rapid increase of plantation area, moso bamboo ecosystem will continue to play an important role in regional carbon budget.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号