首页 | 本学科首页   官方微博 | 高级检索  
     检索      

苜蓿秸秆压缩仿真离散元模型参数标定
引用本文:马彦华,宋春东,宣传忠,王昊毅,杨帅,武佩.苜蓿秸秆压缩仿真离散元模型参数标定[J].农业工程学报,2020,36(11):22-30.
作者姓名:马彦华  宋春东  宣传忠  王昊毅  杨帅  武佩
作者单位:内蒙古农业大学机电工程学院,内蒙古自治区草业与养殖业智能装备工程技术研究中心,呼和浩特 010018;内蒙古农业大学机电工程学院,内蒙古自治区草业与养殖业智能装备工程技术研究中心,呼和浩特 010018;内蒙古农业大学机电工程学院,内蒙古自治区草业与养殖业智能装备工程技术研究中心,呼和浩特 010018;内蒙古农业大学机电工程学院,内蒙古自治区草业与养殖业智能装备工程技术研究中心,呼和浩特 010018;内蒙古农业大学机电工程学院,内蒙古自治区草业与养殖业智能装备工程技术研究中心,呼和浩特 010018;内蒙古农业大学机电工程学院,内蒙古自治区草业与养殖业智能装备工程技术研究中心,呼和浩特 010018
基金项目:国家自然科学基金项目(31860666,51165029)
摘    要:为了提高苜蓿秸秆压缩过程中离散元仿真研究所用参数的准确度,该研究采用物理试验和仿真优化设计相结合的方法对离散元仿真参数进行标定。首先,以接触参数物理试验结果为仿真参数选择依据,利用Plackett-Burman试验对初始参数进行显著性筛选,方差分析结果表明,苜蓿秸秆-苜蓿秸秆静摩擦系数、苜蓿秸秆-苜蓿秸秆滚动摩擦系数、苜蓿秸秆-45钢静摩擦系数对仿真休止角影响显著。进一步以休止角的相对误差值为评价指标,对3个显著性参数进行最陡爬坡试验,优化显著性参数取值范围,并基于Box-Behnken试验建立休止角与显著性参数的二阶回归模型,以物理试验得到的38.88°休止角为目标值,对显著性参数进行寻优,得到最优组合:苜蓿秸秆-苜蓿秸秆静摩擦系数为0.45、苜蓿秸秆-苜蓿秸秆滚动摩擦系数为0.08、苜蓿秸秆-45钢的静摩擦系数为0.54。最后利用T检验得到P0.05,表明仿真休止角与物理试验值无显著性差异,验证了最优参数组合的可靠性。研究结果表明,应用上述各优化试验来标定离散元仿真参数是可行的,同时标定的参数可为苜蓿秸秆的其它仿真试验提供参考。

关 键 词:苜蓿秸秆  物理试验  离散元  休止角  参数标定  优化设计
收稿时间:2020/1/12 0:00:00
修稿时间:2020/6/2 0:00:00

Parameters calibration of discrete element model for alfalfa straw compression simulation
Ma Yanhu,Song Chundong,Xuan Chuanzhong,Wang Haoyi,Yang Shuai,Wu Pei.Parameters calibration of discrete element model for alfalfa straw compression simulation[J].Transactions of the Chinese Society of Agricultural Engineering,2020,36(11):22-30.
Authors:Ma Yanhu  Song Chundong  Xuan Chuanzhong  Wang Haoyi  Yang Shuai  Wu Pei
Institution:College of Mechanical and Electrical Engineering, Inner Mongolia Engineering Research Center for Intelligent Facilities in Prataculture and Livestock Breeding, Inner Mongolia Agricultural University, Hohhot 010018, China
Abstract:Abstract: Alfalfa is compressed into pellets, which can not only solve the problem of storage and transportation, but also maintain the nutrition of alfalfa. Therefore, alfalfa pellet has broad market application prospects. In the compression process, the compression piston overcomes the material deformation resistance, the friction between the materials and the friction between the materials and the inner wall of the die. Researching the effect of pressure on the material in the die is helpful to reveal the compressing mechanism and select the reasonable compression parameters. The discrete element simulation analysis provides an effective method for the stress research in the process of alfalfa straw densification. In the simulation analysis of alfalfa straw compression process with EDEM software, the accuracy of the input parameters has significant influences on the simulation results. The simulation parameters used in EDEM software for simulation of alfalfa straw compression were calibrated based on the combination of physical experiment and simulation optimization design in this study. The physical experiments of the contact parameters alfalfa straw-alfalfa straw and alfalfa straw-45 steel were carried out with test equipments such as inclinometer and high-speed camera, and the collision recovery coefficient of alfalfa straw-alfalfa straw ranged from 0.1 to 0.3 while alfalfa straw-45 steel was 0.1-0.6, static friction coefficient of alfalfa straw-alfalfa straw was 0.3-0.6 while alfalfa straw-45 steel was 0.2-0.8, and rolling friction coefficient of alfalfa straw-alfalfa straw and alfalfa straw--45 steel were 0-0.3, respectively. Based on the physical experiment results of contact parameters, the Plackett-Burman test was used to screen the initial parameters. The results of variance analysis showed that the static friction coefficient of alfalfa straw-alfalfa straw, rolling friction coefficient of alfalfa straw-alfalfa straw, static friction coefficient of alfalfa straw -45 steel had a significant effect on the simulation repose angle. Taking the relative error value of repose angle as the evaluation index, the steepest climbing test was carried out to optimize the range of significant parameters. Based on the Box-Behnken test, the second-order regression model of repose angle and significance parameters was established, Taking the 38.88° repose angle obtained from the physical experiment as the target value, the significance parameters were optimized and the optimal combination of parameters was obtained: alfalfa straw-alfalfa straw static friction coefficient 0.45, alfalfa straw-alfalfa straw rolling friction coefficient 0.08, and alfalfa straw -45 steel static friction coefficient 0.54. Finally, the parameters were used in the simulation experiments and repeated three times. The simulated repose angles of alfalfa straw were 39.62°, 37.83°, 38.69°, respectively. The results of T-test (P = 0.778> 0.05) with Origin 2018 software indicated that there was no significant difference in repose angle between the simulation and the physical test, which verified the reliability of the optimal parameter combination. The results showed that it was feasible to calibrate the contact parameters of alfalfa straw with the above optimization experiments. The calibration method can provide reference for the discrete element parameter calibration of other materials and the parameters obtained by the calibration method in this study can provide a parameter basis for the further study on the forming mechanism of the material block and the law of stress transfer in the material layer by using the discrete element method.
Keywords:alfalfa straw  physical experiment  discrete element  repose angle  parameter calibration  optimal design
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号