首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mutagenic activity of soils amended with two refinery wastes
Authors:K W Brown  K C Donnelly  J C Thomas  P Davol  B R Scott
Institution:1. Soil and Crop Sciences Department Texas A&M University College Station, 77843, TX, U.S.A.
2. Phoenix Corp., Smithville, TX, U.S.A.
Abstract:The mutagenic potential of the acid, base, and neutral fractions of petroleum sludge amended soil was determined using the Salmonella/microsome assay and Aspergillus methionine assay. Organic compounds were extracted from two different soils amended with either storm-water runoff impoundment or combined API-separator/slop-oil emulsion solids waste. Application of either waste to soil reduced the mutagenic activity of organic compounds extracted from equal weights of soil. However, biodegradation increased both the total and the direct-acting mutagenicity of all fractions residual in the waste-amended soil. The maximum level of mutagenic activity per milligram residual C was detected in the sample collected 360 days after waste application for the acid and base fractions from the storm-water runoff impoundment amended soils and the acid, base, and neutral fractions of the combined API separator/slop-oil emulsion waste amended soils. A comparison of the results based on equivalent weights of soil indicates that the mutagenic potential of both wastes was reduced by soil incorporation. The results from the Salmonella assay indicate that while the bulk of the solvent extractable organics in both wastes was rendered non-mutagenic, the mutagenic potential of the organic compounds in the acid fraction from the storm-water runoff impoundment sludge amended soil was increased. The results from the Aspergillus assay of both wastes indicate that the mutagenic potential of all three fractions was eventually reduced to a level that would be considered non-mutagenic. Thus, while degradation may have increased the mutagenic potential of specific organic compounds that were residual in the soil, the overall effect of degradation was to reduce the weighted activity of the waste amended soil.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号