首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Soil properties under Acacia nilotica trees in a traditional agroforestry system in central India
Authors:CB Pandey  AK Singh  DK Sharma
Institution:(1) Department of Forestry, Indira Gandhi Agricultural University, Raipur, 492 012, India (Author for correspondence);(2) Department of Statistics, Indira Gandhi Agricultural University, Raipur, 492 012, India;(3) Department of Forestry, Indira Gandhi Agricultural University, Raipur, 492 012, India
Abstract:Acacia nilotica (L.) Willd. ex Del is an important multipurpose tree of traditional agroforestry system in the central belt of the Indian sub-continent. The tree is reported to reduce crop yields under its canopy. However, information is lacking on the spatial variation in soil physical characters, nutrient pool sizes and their availability to crops under its canopy. The present study reports influence of three tree canopy positions, viz. mid canopy, canopy edge and canopy gap, of Acacia nilotica (≥ 12 years) on texture, organic C, total and mineral N and P, and soil pH, in 0 to 10, 10 to 20 and 20 to 30 cm depth of the soil at ten sites in a traditional agroforestry system. Sand particles declined by 10% and 9% whereas clay particles increased by 14% and 10% under mid canopy and canopy edge, respectively, compared to that under canopy gap. Clay particles did not decline significantly with soil depth under all canopy positions. Proportion of silt particles was not influenced by the canopy position. Soil organic C, total N, total P, mineral N (NO3 -N and NH4 +-N) and P were greater under mid canopy and canopy edge positions compared to canopy gap. Soil organic C and N pool sizes were maximum in 0 to 10 cm and declined with the depth of soil. Total and mineral P contents were nearly uniform across the depths. C/N ratio tended to increase with the soil depth whereas C/P ratio declined. This revised version was published online in June 2006 with corrections to the Cover Date.
Keywords:C:N ratio  C:P ratio  dispersed trees  N mineralization  soil texture
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号