首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Growth,feed conversion,body composition and nutrient retention efficiencies in fingerling catfish, Heteropneustes fossilis (Bloch), fed different sources of dietary carbohydrate
Authors:A K Jafri
Abstract:Growth, conversion efficiency, body composition, nutrient retention and plasma glucose concentration were evaluated in fingerling catfish, Heteropneustes fossilis (Bloch), (3.25 ± 0.1 g) fed iso-nitrogenous (40% crude protein) and iso-caloric (4.7 kcal g–1 gross energy) test diets containing different sources of carbohydrates (i.e. glucose, fructose, maltose, sucrose, dextrin, pre-cooked corn-starch or α- cellulose) at the 20% level of inclusion. Each dietary treatment had three replicates of 20 fish each. The growth trial was conducted in 70-L high-density polyvinyl flow-through (1–1.5 L min–1) indoor circular troughs (water volume = 55 L). The catfish were fed to apparent satiation twice daily at 0800 and 1600 h for 6 days a week over ≈ 8 weeks. No significant (P > 0.05) differences were noted in the growth and feed conversion efficiencies when fish were fed the sucrose, dextrin and corn-starch diets. Similarly, growth and conversion efficiencies were similar (P > 0.05) in fish fed the glucose, fructose and maltose diets. The minimum growth and conversion efficiencies were found in fish fed the α-cellulose diet. Post-feeding glucose or maltose resulted in the maximum increase in plasma glucose, followed by sucrose, dextrin, fructose or corn-starch diets, over the 8-h sampling period. Post-feeding α-cellulose produced a relatively low (P > 0.05) variation in the plasma glucose level. Compared to the initial values, higher values of dry matter, crude protein, lipid and body energy, and lower percentages of ash were recorded in catfish fed different sources of carbohydrate. The maximum protein retention rate was seen in fish fed the dextrin diet, while a higher energy retention rate was observed in fish fed the sucrose-based diet. Dietary α-cellulose produced significantly (P < 0.05) lower values of protein and energy retention in fish. The present study indicates that utilization of complex carbohydrates in catfish is more successful with di- and monosaccharides, while dietary α-cellulose is poorly utilized.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号