首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects on rice plant morphology and physiology of water and associated management practices of the system of rice intensification and their implications for crop performance
Authors:Amod K Thakur  Sreelata Rath  D U Patil  Ashwani Kumar
Institution:(1) Directorate of Water Management, Bhubaneswar, Orissa, India
Abstract:Field experiments were conducted in Bhubaneswar, Orissa, India, during the dry season (January–May) in 2008 and 2009 to investigate whether practices of the System of Rice Intensification (SRI), including alternate wetting and drying (AWD) during the vegetative stage of plant growth, could improve rice plants’ morphology and physiology and what would be their impact on resulting crop performance, compared with currently recommended scientific management practices (SMP), including continuous flooding (CF) of paddies. With SRI practices, grain yield was increased by 48% in these trials at the same time, there was an average water saving of 22% compared with inundated SMP rice. Water productivity with AWD-SRI management practices was almost doubled (0.68 g l−1) compared to CF-SMP (0.36 g l−1). Significant improvements were observed in the morphology of SRI plants in terms of root growth, plant/culm height, tiller number per hill, tiller perimeter, leaf size and number, leaf area index (LAI), specific leaf weight (SLW), and open canopy structure. These phenotypic improvements of the AWD-SRI crop were accompanied by physiological changes: greater xylem exudation rate, crop growth rate, mean leaf elongation rate (LER), and higher light interception by the canopy compared to rice plants grown under CF-SMP. SRI plants showed delayed leaf senescence and greater light utilization, and they maintained higher photosynthetic rates during reproductive and grain-filling stages. This was responsible for improvement in yield-contributing characteristics and higher grain yield than from flooded rice with SMP. We conclude that SRI practices with AWD improve rice plants’ morphology, and this benefits physiological processes that result in higher grain yield and water productivity.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号